Frequency Inverter

Convertidores de Frecuencia

 Inversores de FrequiênciaCFW ${ }^{08}$ VECTOR INVERTER

CFW ${ }^{08}$ VECTOR INVERTER P|US

User's
Guide
Guia del Usuario

Manual do usuário

FREQUENCY

INVERTER

MANUAL

Series: CFW-08
Software: version 3.9X
0899.4690 E/5

ATTENTION!

It is very important to check if the
inverter software version is the
same as indicated above.

The table below describes all revisions made to this manual.

Revision	Description	Section
1	First Edition	-
2	Item 3.3-CE Installation Included	See item 3.3
3	General Revision	-
4	External Parallel Keypad and Fixs Kit Included and General Revision	See item 8.3 and 8.12
5	General Revision Description changed of the Parallel Cable for the External Parallel Keypad. Item 7.5 (Spare Part List) Removed. Parameter 536 included and General Revision	See item 8.5 and 6.3.5

Quick Parameter Reference, Fault and Status Messages

1 Parameters .. 07
2 Fault Messages ... 14
3 Other Messages .. 14
CHAPTER 1
Safety Notices
1.1 Safety Notices in the Manual 15
1.2 Safety Notice on The Product 15
1.3 Preliminary Recommendations 15
CHAPTER 2
2.1 About this Manual 17
2.2 Version of Software 17
2.3 About the CFW-08 18
2.3.1 Differences between the Old μ line and the New CFW-08 21
2.4 CFW-08 Identification 25
2.5 Receiving and Storing 27
CHAPTER 3Installation
3.1 Mechanical Installation 28
3.1.1 Environment 28
3.1.2 Mounting Specifications 29
3.2 Electrical Installation 32
3.2.1 Power/Grounding Connections 32
3.2.2 Power Terminals 35
3.2.3 Location of the Power/Grounding/Control Connections 36
3.2.4 Control Wiring 37
3.2.5 Typical Terminal Connections 40
3.3 European EMC Directive 43
3.3.1 Installation 43
3.3.2 Inverter Models and Filters 44
3.3.3 EMC Categories Description 46
3.3.4 EMC Categories Characteristics Filters 47
4.1 Pre-Power Checks 52
4.2 Initial Power-up 52
4.3 Start-up 53
4.3.1 Start-up Operation via Keypad (HMI) Type of Control: Linear V/F (P202=0) 53
4.3.2 Start-up Operation via Terminals -
Type of Control: Linear V/F (P202=0) 55
4.3.3 Start-up - Operation via Keypad (HMI)
Type of Control: Vector (P202=2) 56

CHAPTER 5 Keypad (HMI) Operation

5.1 Keypad (HMI) Description 60
5.2 Use of the Keypad (HMI) 61
5.2.1 Keypad Operation 62
5.2.2 Inverter Status 63
5.2.3 Read-Only Variables 63
5.2.4 Parameter Viewing and Programming 64
6.1 Symbols 66
6.2 Introduction 66
6.2.1 Control Modes 66
6.2.2 V/F Control 66
6.2.3 Vector Control (VVC) 67
6.2.4 Frequency Reference Sources 67
6.2.5 Commands 70
6.2.6 Local/Remote Operation Modes 70
6.3 Parameter Listing 71
6.3.1 Access and Read Only Parameters - P000...P099 72
6.3.2 Regulation Parameters - P100...P199 73
6.3.3 Configuration Parameters - P200...P398 81
6.3.4 Motor Parameters - P399...P499 101
6.3.5 Special Function Paramaters - P500...P599 104
6.3.5.1 PID Introduction 104
6.3.5.2 PID Description 104
6.3.5.3 PID Start-up Guide 106
CHAPTER 7
7.1 Faults and Possible Causes 110
7.2 Troubleshooting 112
7.3 Contacting WEG 113
7.4 Preventive Maintenance 113
7.4.1 Cleaning Instructions 114
CHAPTER 8
8.1 HMI-CFW08-P 116
8.1.1 Instructions for Insertion - Removing of HMI-CFW08-P 117
8.2 TCL-CFW08 117
8.3 HMI-CFW08-RP 117
8.3.1 HMI-CFW08-RP Installation 118
8.4 MIP-CFW08-RP 118
8.5 CAB-RP-1, CAB-RP-2, CAB-RP-3, CAB-RP-5, CAB-RP-7.5, CAB-RP-10 119
8.6 HMI-CFW08-RS 119
8.6.1 HMI-CFW08-RS Installation 120
8.6.2 HMI-CFW08-RS Start-up 120
8.6.3 Keypad Copy Function 121
8.7 MIS-CFW08-RS 121
8.8 CAB-RS-1, CAB-RS-2, CAB-RS-3, CAB-RS-5, CAB-RS-7.5 CAB-RS-10 121
8.9 KCS-CFW08 122
8.9.1 Instruction and Removing Instructions for KCS-CFW08 123
8.10 KSD-CFW08 123
8.11 KMD-CFW08-M1 124
8.12 KFIX-CFW08-M1, KFIX-CFW08-M2 125
8.13 KN1-CFW08-M1, KN1-CFW08-M2 126
8.14 MIW-02 126
8.15 RFI Filters 127
8.16 Line Reactor 128
8.16.1 Application Criteria 128
8.17 Load Reactor 129
8.18 Dynamic Braking 131
8.18.1 Resistor Sizing 131
8.18.2 Installation 132
8.19 Serial Communication 133
8.19.1 Introduction 133
8.19.2 Interfaces Description 134
8.19.2.1 RS-485 134
8.19.2.2 RS-232 136
8.19.3 Definitions 136
8.19.3.1 Used Terms 136
8.19.3.2 Parameters/Variables Resolution 136
8.19.3.3 Character Format 136
8.19.3.4 Protocol 137
8.19.3.4.1 Reading Message 137
8.19.3.4.2 Writing Message 138
8.19.3.5 Execution and Message Test 138
8.19.3.6 Message Sequence 139
8.19.3.7 Varaiables Code 139
8.19.4 Message Examples 139
8.19.5 Variables and Errors of the Serial Communication 140
8.19.5.1 Basic Variables 140
8.19.5.1.1 V00 (Code 00700) 140
8.19.5.1.2 V02 (Code 00702) 140
8.19.5.1.3 V03 (Code 00703) 141
8.19.5.1.4 V04 (Code 00704) 142
8.19.5.1.5 V05 (Code 00705) 142
8.19.5.1.6 Message Examples with
Basic Variables 142
8.19.5.2 Parameters Related to the Serial Communication14 143
8.19.5.3 Errors Related to the Serial Communication 144
8.19.6 Times for Read/Write of Messages 144
8.19.7 Physical Connection of RS-232 and RS-485 Interface 145
8.20 Modbus-RTU 146
8.20.1 Introduction in the Modbus-RTU Protocol 146
8.20.1.1 Transmission Modes 146
8.20.1.2 Message Structure in RTU Mode 146
8.20.1.2.1 Address 147
8.20.1.2.2 Code Function 147
8.20.1.2.3 Data Field 147
8.20.1.2.4 CRC 147
8.20.1.3 Time between messages 148
8.20.2 Operation of the CFW-08 in the Modbus-RTU Network 148
8.20.2.1 Interface Description 148
8.20.2.1.1 RS-232 149
8.20.2.1.2 RS-485 149
8.20.2.2 Inverter Configuration in the Modbus-RTU Network 149
8.20.2.2.1 Inverter address in the Network 149
8.20.2.2.2 Transmission Rate and Parity 149
8.20.2.3 Access to the Inverter Data 149
8.20.2.3.1Available Functions and Response Times 150
8.20.2.3.2 Register addressing and Offset 150
8.20.3 Detailed Function Description 152
8.20.3.1 Function 01 - Read Coils 153
8.20.3.2 Function 03 - Read Holding Register 153
8.20.3.3 Function 05 - Write Single Coil 154
8.20.3.4 Function 06 - Write Single Register 155
8.20.3.5 Function 15 - Write Multiple Coils 155
8.20.3.6 Function 16 - Write Multiple Registers 156
8.20.3.7 Function 43 - Read Device Identification 157
8.20.4 Communication Errors 159
8.20.4.1 Error Messages 159
CHAPTER 9
9.1 Power Data 161
9.1.1 200-240V Power Supply 161
9.1.2 380 - 480V Power Supply 161
9.2 General Electronic Data 163
9.3 WEG Standard IV Pole Motor Data 164
Warranty Terms for Frequency Inverters - CFW-08 165

QUICK PARAMETER REFERENCE, FAULT AND STATUS MESSAGES

Software: V3.9X
Application:
Model:
Serial Number:
Responsible:
Date:

1. Parameters

Parameter	Function	Adjustable Range	Factory Setting	User Setting	Note	Page
P000	Parameter Access	$\begin{aligned} & 0 \ldots 4,6 \ldots 999=\text { Read } \\ & 5=\text { Alteration } \end{aligned}$	0	-		72
READ ONLY PARAMETERS (P002 ... P099)						
P002	Fequency Proportional Value (P208xP005)	0 ... 6553	-	-		72
P003	Motor Current	$0 . . .1 .5 x \mathrm{I}_{\text {nom }}$	-	-		72
P004	DC Link Voltage	$0 \ldots 862 \mathrm{~V}$	-	-		72
P005	Motor Frequency	0.00 ...99.99, 100.0 ... 300.0 Hz	-	-		72
P007	Motor Voltage	0 ... 600V	-	-		72
P008	Heatsink Temperature	$25 . . .110^{\circ} \mathrm{C}$	-	-		72
P009	Motor Torque	0.0 ... 150.0\%	-	-	Only avaliable in vector control mode (P202=2)	72
P014	Last Fault	$00 \ldots 41$	-	-		72
P023	Software Version	x.yz	-	-		73
P040	PID Process Variable (Value \% x P528)	0 ... 6553	-	-		73
REGULATION PARAMETERS (P100 ... P199)						
Ramps						
P100	Acceleration Time \#1	0.1... 999s	5.0			73
P101	Deceleration Time \#1	0.1... 999s	10.0			73
P102	Acceleration Time \#2	0.1... 999s	5.0			73
P103	Deceleration Time \#2	0.1 ... 999s	10.0			73
P104	S Ramp	$\begin{aligned} & 0=\text { Inactive } \\ & 1=50 \% \\ & 2=100 \% \end{aligned}$	0			73
Frequency Reference						
P120	Digital Reference Backup	$\begin{aligned} & \hline 0=\text { Inactive } \\ & 1=\text { Active } \\ & 2=\text { Backup by P121 } \\ & \text { (or P525 - PID) } \\ & \hline \end{aligned}$	1			74
P121	Keypad Reference	P133 ... P134	3.00			74
P122	JOG Speed Reference	0.00 ... P134	5.00			74
P124	Multispeed Reference 1	P133 ... P134	3.00			75
P125	Multispeed Reference 2	P133 ... P134	10.00			75
P126	Multispeed Reference 3	P133 ... P134	20.00			75
P127	Multispeed Reference 4	P133 ... P134	30.00			75
P128	Multispeed Reference 5	P133 ... P134	40.00			75
P129	Multispeed Reference 6	P133 ... P134	50.00			75
P130	Multispeed Reference 7	P133 ... P134	60.00			75
P131	Multispeed Reference 8	P133 ... P134	66.00			75

Parameter	Function	Adjustable Range	Factory Setting	User Setting	Note	Page
Speed Limits						
P133	Minimum Frequency ($\mathrm{F}_{\text {min }}$)	0.00 ... P134	3.00			76
P134	Maximum Frequency ($\mathrm{F}_{\max }$)	P133 ... 300.0Hz	66.00			76
V/F Control						
P136	Manual Torque Boost (IxR Compensation)	0.0 ... 30.0\%	$\begin{aligned} & 5.0 \text { or } \\ & 2.0 \text { or } \\ & 1.0^{(2)} \end{aligned}$		Only available in V/F control Control Mode P202=0 or 1.	76
P137	Aut. Torque Boost (aut. IxR compensation)	0.00 ... 1.00	0.00			76
P138	Slip Compensation	0.0 ... 10.0\%	0.0			77
P142 ${ }^{(1)}$	Maximum Output Voltage	0.0 ... 100\%	100			78
P145 ${ }^{(1)}$	Field Weakening Frequency ($\mathrm{F}_{\text {nom }}$)	P133 ... P134	$\begin{gathered} 50.00 \mathrm{~Hz} \text { or } \\ 60.00 \mathrm{~Hz} \\ \text { depending } \\ \text { on the } \\ \text { market } \end{gathered}$			78
DC Link Voltage Regulation						
P151	DC Link Regulation Level	200V models: 325 ... 410V 400V models: $564 \ldots 820 \mathrm{~V}$	$\begin{aligned} & \hline 380 \mathrm{~V} \\ & 780 \mathrm{~V} \end{aligned}$			79
Overload Current						
P156	Motor Overload Current	$0.2 \mathrm{xI}_{\text {nom }} \ldots . .1 .3 \mathrm{xI}_{\text {nom }}$	$1.2 \times \mathrm{P} 401$			79
Current Limitation						
P169	Maximum Output Current	$0.2 \mathrm{xI}_{\text {nom }} \ldots .2 .0 \mathrm{xI}_{\text {nom }}$	$1.5 \mathrm{xt}{ }_{\text {nom }}$			80
Flux Control						
P178	Rated Flux	50.0 ... 150\%	100		Only available in V/F control mode (P202=2)	80
CONFIGURATION PARAMETERS (P200 ... P398)						
Generic Parameters						
P202 ${ }^{(1)}$	Control Mode	$\begin{array}{\|l} \hline 0 \text { = Linear V/F Control } \\ 1 \text { = Quadratic V/F Control } \\ 2=\text { Sensorless Vector } \\ \hline \end{array}$	0			81
P203 ${ }^{(1)}$	Special Function Selection	$\begin{aligned} & \hline 0 \text { = No function } \\ & 1 \text { = PID Regulator } \\ & \hline \end{aligned}$	0			82
P204 ${ }^{(1)}$	Load Factory Setting	$\begin{aligned} & 0 \ldots 4=\text { No Function } \\ & 5=\text { Loads Factory Default } \end{aligned}$	0	-		82
P205	Display Default Selection	$\begin{aligned} & 0=\mathrm{P} 005 \\ & 1=\mathrm{P} 003 \\ & 2=\mathrm{P} 002 \\ & 3=\mathrm{P} 007 \\ & 4,5=\text { Not used } \\ & 6=\mathrm{P} 040 \end{aligned}$	2			82
P206	Auto-Reset Time	$0 \ldots 255 \mathrm{~s}$	0			82
P208	Reference Scale Factor	0.00 ... 99.9	1.00			83
P215 ${ }^{(1)}$	Keypad Copy Function	$\begin{aligned} & \hline 0 \text { = Off } \\ & 1 \text { = Copy (inverter to keypad) } \\ & 2 \text { = Paste (keypad to inverter) } \end{aligned}$	0		Only available viaHMI-CFW08-RS keypad.	83
P219 ${ }^{(1)}$	Switching Frequency Reduction Point	0.00 ... 25.00 Hz	6.00			84

[^0]| Parameter | Function | Adjustable Range | Factory
 Setting | User
 Setting | Note | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Local/Remote Definition | | | | | | |
| P220 ${ }^{(1)}$ | Local/Remote Selection Source | $0=$ Always Local
 1 = Always Remote
 2 = HMI-CFW08-P or
 HMI-CFW08-RP keypad
 (default: local)
 3 = HMI-CFW08-P or
 HMI-CFW08-RP keypad
 (default: remote)
 4 = DI2 ... DI4
 5 = Serial or HMI-CFW08-RS
 keypad (default: local)
 6 = Serial or HMI-CFW08-RS
 keypad (default: remote) | 2 | | | 85 |
| P221 ${ }^{(1)}$ | Local Reference Selection | $\begin{aligned} & 0=\text { Keypad } \\ & 1=\text { Al1 } \\ & 2,3=\text { Al2 } \\ & 4=\text { E.P. (Electronic Pot. }) \\ & 5=\text { Serial } \\ & 6=\text { Multispeed } \\ & 7=\text { Add Al>=0 } \\ & 8=\text { Add AI } \end{aligned}$ | 0 | | | 86 |
| P222 ${ }^{(1)}$ | Remote Reference Selection | $\begin{aligned} & \hline 0=\text { Keypad }(\boldsymbol{A}) \text { and } \\ & 1=\text { Al1 } \\ & 2,3=\text { Al2 } \\ & 4=\text { E.P. (Eletronic Pot.) } \\ & 5=\text { Serial } \\ & 6=\text { Multispeed } \\ & 7=\text { Add Al>=0 } \\ & 8=\text { Add AI } \end{aligned}$ | 1 | | | 86 |
| P229 ${ }^{(1)}$ | Local Command Selection | $\begin{aligned} & \hline 0=\text { HMI-CFW08-P or } \\ & \text { HMI-CFW08-RP keypad } \\ & 1=\text { Terminals } \\ & 2=\text { Serial or HMI-CFW08-RS } \\ & \text { keypad } \\ & \hline \end{aligned}$ | 0 | | | 86 |
| P230 ${ }^{(1)}$ | Remote Command Selection | $0=\text { HMI-CFW08-P or }$
 HMI-CFW08-RP keypad
 1 = Terminals
 2 = Serial or | 1 | | | 86 |
| P231 ${ }^{(1)}$ | Forward/Reverse Selection | HMI-CFW08-RS keypad
 0 = Forward
 1 = Reverse
 2 = Commands | 2 | | | 86 |
| Analog Input(s) | | | | | | |
| P234 | Analog Input Al1 Gain | 0.00 ... 9.99 | 1.00 | | | 86 |
| P235 ${ }^{(1)}$ | Analog Input Al1 Signal | $\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA} \\ & 1=4-20 \mathrm{~mA} \end{aligned}$ | 0 | | | 87 |
| P236 | Analog Input Al1 Offset | -120 ... 120\% | 0.0 | | | 88 |
| P238 | Analog Input Al2 Gain | 0.00 ... 9.99 | 1.00 | | Only available in CFW-08 Plus Version | 88 |
| P239 ${ }^{(1)}$ | Analog Input Al2 Gain | $\begin{aligned} & 0=0-10 \mathrm{~V} / 0-20 \mathrm{~mA} \\ & 1=4-20 \mathrm{~mA} \end{aligned}$ | 0 | | | 87 |
| P240 | Analog Input Al2 Offset | -120 ... 120\% | 0.0 | | | 88 |
| P248 | Analog Inputs Filter
 Time Constant | 0 ... 200ms | 200 | | | 88 |

[^1]| Parameter | Function | Adjustable Range | Factory
 Setting | User Setting | Note | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Output | | | | | | |
| P251 | Analog Output AO Function | $\begin{aligned} & \hline 0=\text { Output Frequency (Fs) } \\ & 1=\text { Input Reference (Fe) } \\ & 2=\text { Output Current (Is) } \\ & 3,5,8=\text { Not used } \\ & 4=\text { Motor Torque } \\ & 6=\text { Process Variable } \\ & \text { (PID) } \\ & 7=\text { Active Current } \\ & 9=\text { PID Setpoint } \end{aligned}$ | 0 | | Only available in CFW-08 Plus version. | 88 |
| P252 | Analog Output AO Gain | 0.00 ... 9.99 | 1.00 | | | 88 |
| Digital Inputs | | | | | | |
| P263 ${ }^{(1)}$ | Digital Input DI1 Function | 0 = No Function or General Enable
 $1 . .7$ and 10 ... 12 = General Enable
 8 = Forward Run
 9 = Start/Stop
 13 = FWD Run Using
 Ramp \#2
 14 = Start (3-wire) | 0 | | | 89 |
| P264 ${ }^{(1)}$ | Digital Input DI2 Function | 0 = Forward/Reverse
 1 = Local/Remote
 2 ... 6 and $9 \ldots 12=$ Not used
 7 = Multispeed (MS2)
 8 = Reverse
 13 = REV Run - Ramp \#2
 14 = Stop (3-wire) | 0 | | | 89 |
| P265 ${ }^{(1)(2)}$ | Digital Input DI3 Function | 0 = Forward/Reverse
 1 = Local/Remote
 2 = General Enable
 $3=\mathrm{JOG}$
 4 = No External Fault
 5 = Increase E.P.
 6 = Ramp \#2
 7 = Multispeed (MS1)
 $8=$ No Function or
 Start/Stop
 9 = Start/Stop
 10 = Reset
 11, 12 = Not used
 13 = Flying Start Disable
 14 = Multispeed (MS1)
 Using Ramp \#2
 $15=$ Manual/Automatic PID)
 $16=$ Increase E.P. with
 Ramp \#2 | 10 | | | 89 |
| P266 ${ }^{(1)}$ | Digital Input DI4 Function | $\begin{aligned} & 0=\text { Forward/Reverse } \\ & 1=\text { Local/Remote } \\ & 2=\text { General Enable } \end{aligned}$ | 8 | | | 89 |

[^2]| Parameter | Function | Adjustable Range | Factory Setting | User
 Setting | Note | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $3=\mathrm{JOG}$
 $4=$ No Extrernal Fault
 5 = Decrease E.P.
 6 = Ramp \#2
 7 = Multispeed (MSO)
 $8=$ Not used or
 Start/Stop
 $9=$ Start/Stop
 $10=$ Reset
 11, 12, 14 and $15=$
 Not Used
 13 = Flying Start Disable
 $16=$ Decrease E.P. with
 Ramp \#2 | | | | |
| Digital Output(s) | | | | | | |
| P277 ${ }^{(1)}$ | Relay Output RL1 Function | $\begin{aligned} & 0=\mathrm{Fs}>\mathrm{Fx} \\ & 1=\mathrm{Fe}>\mathrm{Fx} \\ & 2=\mathrm{Fs}=\mathrm{Fe} \\ & 3=\mathrm{Is}>\mathrm{Ix} \\ & 4 \text { and } 6=\text { Not used } \\ & 5=\text { Run } \\ & 7=\text { No Fault } \end{aligned}$ | 7 | | | 94 |
| P279 ${ }^{(1)}$ | Relay Output RL2 Function | $\begin{aligned} & 0=\mathrm{Fs}>\mathrm{Fx} \\ & 1=\mathrm{Fe}>\mathrm{Fx} \\ & 2=\mathrm{Fs}=\mathrm{Fe} \\ & 3=\mathrm{Is}>\mathrm{lx} \\ & 4 \text { and } 6=\text { Not used } \\ & 5=\text { Run } \\ & 7=\text { No Fault } \end{aligned}$ | 0 | | Only available in CFW-08
 Plus version. | 94 |
| Fx and Ix | | | | | | |
| P288 | Fx Frquency | 0.00 ... P134 | 3.00 | | | 95 |
| P290 | Ix Current | $0 \ldots 1.5 \mathrm{xI}_{\text {nom }}$ | $1.0 x \mathrm{I}_{\text {nom }}$ | | | 95 |
| Inverter Data | | | | | | |
| P295 ${ }^{(1)}$ | Rated Inverter Current ($I_{\text {nom }}$) | $\begin{aligned} & 300=1.0 \mathrm{~A} \\ & 301=1.6 \mathrm{~A} \\ & 302=2.6 \mathrm{~A} \\ & 303=2.7 \mathrm{~A} \\ & 304=4.0 \mathrm{~A} \\ & 305=4.3 \mathrm{~A} \\ & 306=6.5 \mathrm{~A} \\ & 307=7.0 \mathrm{~A} \\ & 308=7.3 \mathrm{~A} \\ & 309 \end{aligned}$ | According to the inverter model | | | 95 |
| P297 ${ }^{(1)}$ | Switching Frequency | $\begin{aligned} & 4=5.0 \mathrm{kHz} \\ & 5=2.5 \mathrm{kHz} \\ & 6=10 \mathrm{kHz} \\ & 7=15 \mathrm{kHz} \end{aligned}$ | 4 | | In vector control mode (P202=2) it is not possible to set P297=7 $(15 \mathrm{kHz})$. | 96 |
| DC Braking | | | | | | |
| P300 | DC Braking Time | 0.0 ... 15.0s | 0.0 | | | 97 |
| ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped). | | | | | | |

Parameter	Function	Adjustable Range	Factory Setting	User Setting	Note	Page
P301	DC Braking Start Frequency	$0.00 \ldots 15.00 \mathrm{~Hz}$	1.00			97
P302	DC Braking Current	0.0 ... 130\%	0.0			97
Skip Frequencies						
P303	Skip Frequency 1	P133 ... P134	20.00			98
P304	Skip Frequency 2	P133 ... P134	30.00			98
P306	Skip Band Range	$0.00 \ldots 25.00 \mathrm{~Hz}$	0.00			98
Serial Communication Interface I						
P308 ${ }^{(1)}$	Inverter Address	1 ... 30 (Serial WEG) 1 ... 247 (Modbus-RTU)	1			98
Flying Start and Ride-Through						
P310 ${ }^{(1)}$	Flying Start and Ride-Through	$\begin{aligned} & \hline 0=\text { Inactive } \\ & 1=\text { Flying Start } \\ & 2=\text { Flying Start and } \\ & \quad \text { Ride-Through } \\ & 3=\text { Ride-Through } \end{aligned}$	0			99
P311	Voltage Ramp	0.1 ... 10.0s	5.0			100
Serial Communication Interface II						
P312 ${ }^{(1)}$	Serial Interface Protocol	0 = Serial WEG 1 = Modbus-RTU 9600 bps without parity 2 = Modbus-RTU 9600 bps with odd parity 3 = Modbus-RTU 9600 bps with even parity 4 = Modbus-RTU 19200 bps without parity 5 = Modbus-RTU 19200 bps with odd parity $6=$ Modbus-RTU 19200 bps with even parity 7 = Modbus-RTU 38400 bps without parity 8 = Modbus-RTU 38400 bps with odd parity 9 = Modbus-RTU 38400 bps with even parity	0			100
P313	Serial Interface Watchdog Action	$\begin{aligned} & 0=\text { Desabling by ramp } \\ & 1=\text { General disable } \\ & 2=\text { Shows only E28 } \\ & 3=\text { Goes to local mode } \end{aligned}$	2			100
P314	Serial Interface Watchdog Timeout	$0.0=$ Desables the function 0.1 ...99.9s = Set value	0.0			100

[^3]| Parameter | Function | Adjustable Range | Factory Setting | User Setting | Note | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOTOR PARAMETERS (P399 ... P499) | | | | | | |
| Rated Parameters | | | | | | |
| P399 ${ }^{(1)}$ | Rated Motor Efficiency | 50.0 ... 99.9\% | According to inverter model (motor matched to the inverter see item 9.3) and sales market | | Only available in vector mode (P202=2). | 101 |
| P400 ${ }^{(1)}$ | Rated Motor Voltage | 0 ...600V | | | | 101 |
| P401 | Rated Motor Current | $0.3 \mathrm{xI}_{\text {nom }} \ldots 1.3 \mathrm{xI}_{\text {nom }}$ | | | Only available in vector mode (P202=2). | 101 |
| P402 | Rated Motor Speed | 0 ... 9999rpm | | | | 101 |
| P403 ${ }^{(1)}$ | Rated Motor Frequency | $0.00 \ldots$ P134 | | | | 101 |
| P404 ${ }^{(1)}$ | Rated Motor Power | $\begin{aligned} & 0=0.16 \mathrm{HP} / 0.12 \mathrm{~kW} \\ & 1=0.25 \mathrm{HP} / 0.18 \mathrm{~kW} \\ & 2=0.33 \mathrm{HP} / 0.25 \mathrm{~kW} \\ & 3=0.50 \mathrm{HP} / 0.37 \mathrm{~kW} \\ & 4=0.75 \mathrm{HP} / 0.55 \mathrm{~kW} \\ & 5=1 \mathrm{HP} / 0.75 \mathrm{~kW} \\ & 6=1.5 \mathrm{HP} / 1.1 \mathrm{~kW} \\ & 7=2 \mathrm{HP} / 1.5 \mathrm{~kW} \\ & 8=3 \mathrm{HP} / 2.2 \mathrm{~kW} \\ & 9=4 \mathrm{HP} / 3.0 \mathrm{~kW} \\ & 10=5 \mathrm{HP} / 3.7 \mathrm{~kW} \\ & 11=5.5 \mathrm{HP} / 4.0 \mathrm{~kW} \\ & 12=6 \mathrm{HP} / 4.5 \mathrm{~kW} \\ & 13=7.5 \mathrm{HP} / 5.5 \mathrm{~kW} \\ & 14=10 \mathrm{HP} / 7.5 \mathrm{~kW} \\ & 15=12.5 \mathrm{HP} / 9.2 \mathrm{~kW} \end{aligned}$ | | | | 102 |
| P407 ${ }^{(1)}$ | Rated Motor Power Factor | 0.50 ... 0.99 | | | | 102 |
| Measured Parameters | | | | | | |
| P408 ${ }^{(1)}$ | Self-Tuning | $\begin{aligned} & 0=\mathrm{No} \\ & 1=\mathrm{Yes} \end{aligned}$ | 0 | - | Only available | 102 |
| P409 | Motor Stator Resistance | 0.00 ... 99.99 ${ }^{\text {a }}$ | According to inverter model | | in vector mode (P202=2). | 103 |
| SPECIAL FUNCTION (P500 ... P599) | | | | | | |
| PID Regulator | | | | | | |
| P520 | PID Proportional Gain | 0.000 ... 7.999 | 1.000 | | | 109 |
| P521 | PID Integral Gain | 0.000 ... 9.999 | 1.000 | | | 109 |
| P522 | PID Differential Gain | 0.000 ... 9.999 | 0.000 | | | 109 |
| P525 | Setpoint Via Keypad of the PID Regulator | 0.00 ... 100.0\% | 0.00 | | | 109 |
| P526 | Process Variable Filter | 0.01 ... 10.00s | 0.10 | | | 109 |
| P527 | PID Action | $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Reverse } \end{aligned}$ | 0 | | | 109 |
| P528 | Process Variable Scale Factor | 0.00 ... 99.9 | 1.00 | | | 109 |
| P536 | Automatic Setting of P525 | 0=Active
 1=Inactive | 0 | | | 109 |

[^4]2. Fault Messages

Display	Description	Page
E00	Output Overcurrent/Short-Circuit	110
E01	DC Link Overvoltage	110
E02	DC Link Undervoltage	110
E04	Inverter Overtemperature	111
E05	Output Overload (Ixt Function)	111
E06	External Fault	111
E08	CPU Error (Watchdog)	111
E09	Program Memory Error (Checksum)	111
E10	Keypad Copy Function Error	111
E14	Self-tuning Fault	111
E22, E25	Serial Communication Error	111
E26 and E27	Programming Error	111
E24	Perial Interface Watchdog Timeout Error	111
E28	Sey	111
E31	Keypad Connection Fault (HMI-CFW08-RS)	111
E41	Self-Diagnosis Fault	

3. Other Messages

Display	Description
rdy	Inverter is ready to be enabled
Sub	Power suplly voltage is too low for the inverter operation (Undervoltage)
dcbr	Inverter in DC braking mode
auto	Inverter is running self-tuning routine
copy	Keypad Copy Function in Progress (only available in the HMI-CFW08-RS) - inverter to keypad
past	Keypad Copy Function in Progress (only available in the HMI-CFW08-RS) - Keypad to Inverter

SAFETY NOTICES

This Manual contains necessary information for the correct use of the CFW-8 Variable Frequency Drive.
This Manual has been written for qualified personnel with suitable training and technical qualification to operate this type of equipment.

1.1 SAFETY NOTICES IN THE MANUAL

1.2 SAFETY NOTICE ON THE PRODUCT

Shield connection to ground

1.3 PRELIMINARY RECOMMENDATIONS

DANGER!

Only qualified personnel should plan or implement the installation, start- up, operation and maintenance of this equipment. Personnel must review entire Manual before attempting to install, operate or troubleshoot the CFW-08.

DANGER!
The inverter control circuit (ECC2, DSP) and the HMI-CFW08-P are not grounded. They are high voltage circuits.

These personnel must follow all safety instructions included in this Manual and/or defined by local regulations.
Failure to comply with these instructions may result in personnel injury and/or equipment damage.

NOTE!

In this Manual, qualified personnel are defined as people that are trained to:

1. Install, ground, power up and operate the CFW-08 according to this Manual and the local required safety procedures;
2. Use of safety equipment according to the local regulations;
3. Administer Cardio Pulmonary Resuscitation (CPR) and First Aid.

DANGER!

Always disconnect the supply voltage before touching any electrical component inside the inverter.

Many components are charged with high voltages, even after the incoming AC power supply has been disconnected or switched OFF. Wait at least 10 minutes for the total discharge of the power capacitors.

Always connect the frame of the equipment to the ground (PE) at the suitable connection point.

ATTENTION!

All electronic boards have components that are sensitive to electrostatic discharges. Never touch any of the electrical components or connectors without following proper grounding procedures. If necessary to do so, touch the properly grounded metallic frame or use a suitable ground strap.

Do not apply High Voltage (High Pot) Test on the Inverter! If this test is necessary, contact the Manufacturer.

NOTE!

Inverters can interfere with other electronic equipment. In order to reduce this interference, adopt the measures recommended in Section 3 "Installation".

NOTE!

Read this entire Manual carefully and completely before installing or operating the CFW-08.

GENERALINFORMATION

This chapter defines the contents and purposes of this manual and describes the main characteristics of the CFW-08 frequency inverter. Identification, receiving inspections and storage requirements are also provided.

2.1 ABOUT THIS MANUAL

2.2 SOFTWARE VERSION

This Manual is divided into 10 Chapter, providing infornation to the user on how receive, install, start-up and operate the CFW-08:

Chapter 1 - Safety Notices;
Chapter 2 - General Information;
Chapter 3- Installation;
Chapter 4- Start-up;
Chapter 5- Keypad HMI) Operation;
Chapter 6- Detailed Parameter Description;
Chapter 7- Diagnostic and Troubleshooting;
Chapter 8-CFW-08 Options and Accessories;
Chapter 9- Technical Specifications;
Chapter 10-Warranty Policy.

This Manual provides information for the correct use of the CFW-08. The CFW-08 is very flexible and allows for the operation in many different modes as described in this manual.

As the CFW-08 can be applied in several ways, it is impossible to describe here all of the application possibilities. WEG does not accept any responsibility when the CFW-08 is not used according to this Manual.

No part of this Manual may be reproduced in any form, without the written permission of WEG.

It is important to note the Software Version installed in the Version CFW08 , since it defines the functions and the programming parameters of the inverter.
This Manual refers to the Software version indicated on the inside cover. For example, the Version 3.0X applies to versions 3.00 to 3.09, where " X " is a variable that will change due to minor software revisions. The operation of the CFW-08 with these software revisions are still covered by this version of the Manual.

The Software Version can be read in the Parameter P023.
2.3 ABOUT THE CFW-08

The CFW-08 is a high performance Variable Frequency Drive that permits the control of speed and torque of a three-phase AC induction motor. Two types of control are available in the same product:

『 Programmable scalar (Volts/Hz) control;
园 Sensorless Vector Control (VVC: Voltage Vector Control).
In the vector control mode, the motor performance is optimized relating to torque and speed regulation.
The "Self-Tuning" function, available in vector control, permits the automatic setting of the inverter parameter from the identification (also automatic) of the parameters of the motor connected at the inverter output.
The V/F (scalar) mode is recommended for more simple applications such as pump and fan drives. In these cases one can reduce the motor and inverter losses by using the "Quadratic V/F" option, that results in energy saving.
The V/F mode is also used when more than one motor should be driven simultaneously by one inverter (multimotor application).

There are two CFW-08 versions:
\square Standard: it has 4 digital inputs (DIs), 1 analog input (AI) and 1 relay output.
\square CFW-08 Plus: compared to the standard version it has one additional analog input and one additional relay output. It has also an analog output (AO).

For power ratings and further technical information, see Chaper 9.

Figure 2.1 - Block diagram for the models:
1.6-2.6-4.0-7.0A/200-240V and 1.0-1.6-2.6-4.0A/380-480V

Figura 2.2- Block diagram for the models:
7.3-10-16A/200-240V and 2.7-4.3-6.5-10-13-16A/380-480V

Note: Model 16A/200-240V is not fitted with RFI filter (optional).

2.3.1 Differences between the old μ line and the new CFW-08

This section aims at showing the differences between the old μ line and the new CFW-08. The information below are addressed to user that are used to μ line.

Table below shows the equivalence between the accessories of the old μ line an the new CFW-08.

Acessoriy	μ line	CFW-08
Local Keypad (parallel)	IHM-8P (417100258)	HMI-CFW08-P (417100868)
Remote serial Keypad	IHM-8R (417100244)	HMI-CFW08-RS (417100992)
Remote parallel Keypad	-	HMI-CFW08-RP (417100991)
Interface for remote serial Keypad	MIR-8R (417100259)	MIS-CFW08-RS (417100993)
Interface for remote parallel Keypad	-	MIP-CFW08-RP (417100990)
Interfaces for serial communication RS-232	MCW-01 (417100252)	KCS-CFW08 (417100882)
Interface for RS-485 serial communication RS-485	MCW-02 (417100253)	KCS-CFW08 (417100882) + MIW-02 (417100543)

Product Appearance
ฤ Besides the internal electronics, also the exterrnal product appearance have changed, which are:

- the frontal lettering on the plastic covers (formerly: μ line, now: CFW-08 vector inverter);
- WEG logo is now indicated on all accessories of the CFW-08 line (keypad, communication modules etc).
\square Figure below makes a comparison:

Figure 2.3 - Comparison between μ line a CFW-08 appearance

Version of Software

\square The new CFW-08 starts with Software Version V3.00. Thus, the software Versions V1.xx and V2.xx are exclusive for μ line.
Q Besides the inverter control has been implemented in a DSP (Digital Signal Processor), which enables a more sophisticated control with more parameters and functions.

Accessories

■ With the migration from the 16 bits microcontroller to the DSP of the new CFW-08, the power supply of the electronic circuits had to be changed from 5 V to 3.3 V . Consequently, the accesories (keypads, communication modules, etc) of the old μ line CAN NOT BE USED with the new CFW-08 line. As general rule, use only accessories with WEG logo, as already informed above.

Expansion of the Power Range

\square The power range of the old μ line ($0.25-2 \mathrm{HP}$) has been expanded to (0.25-10HP) with the new CFW-08 line.

Control Modes

ロ Only the CFW-08 line has:

- Voltage Vector Control (VVC) that improves the inverter performance considerably - adding the parameters P178, P399, P400, P402, P403, P404, P407, P408 e P409;
- the quadratic curve V/F improves the systema energy saving capability when loads with quadratic torque x speed characteristics are driven, like pumps and fans.

Frequency Resolution

The new CFW-08 has a frequency resolution 10 times higher than the old μ line, i.e., it has a resoltion of 0.01 Hz for frequencies up to 100.0 Hz and of 0.1 Hz for frequencies higher than 99.99 Hz .

Switching Frequencies of 10 and 15 kHz

\square When the new CFW-08 is used, one can set the inverter switching frequency to 10 and 15 kHz , which enables an extremly quiet operation.
\square The audible noise level generated by the motor with 10 kHz is lower with the CFW-08, when compared with the μ line. This is due to the PWM modulation improvements of the CFW-08.

Inputs and Outputs (I/Os)

\square The CFW-08 Plus line has more I/Os than the old μ line, while the CFW-08 is equivalent to the μ line in terms of of I/Os. See table below:

I/O	μ line	CFW-08	CFW-08 Plus
Digital Inputs	4	4	4
Analog Input(s)	1	1	2
Analog Outputs	-	-	1
Relay Outputs	1	1	2 (1 NO contact,
	(REV contatct)	(REV contact)	1 NC contact)

\square But the control connections (terminals XC1) differ between the μ line and the CFW-08 line. Table below shows theses pin differences:

I/O	μ line	CFW-08	CFW-08 Plus
Digital Input DI1	1	1	1
Digital Input DI2	2	2	2
Digital Input DI3	3	3	3
Digital Input DI4	4	4	4
OV for Digital Inputs	5	5	5
+10 V	6	6	6
Analog Input Al1 - voltage signal	7	7 with switch S1:1 at pos. OFF 7nalog Input AI1 - current signal	9 with switch S1:1
at position OFF			

Parameters and Functions

Parameters that are already used in μ line but have been changed
a) P136 - Manual Torque Boost (IxR Compensation)
\square Besides the parameter name, also the way the user enters the IxR compensation value has been changed. In the old μ line, the parameter P 136 had a family of 10 curves (value range: 0 to 9). In the new CFW-08, the IxR Compensation is set by entering a percent (relating to the input voltage) that defines the output voltage for an output frequency equal to zero. So larger curve set and a larger variation range is obtained.
\square Table below shows the equivalence between which was programmed in the old μ line and which must be programmed in the new CFW08 to obtain the same result.

P136 set in μ line	P136 to be set in the CFW-08
0	0.0
1	2.5
2	5.0
3	7.5
4	10.0
5	12.5
6	15.0
7	17.5
8	20.0
9	22.5

b) Automatic Torque Boost (Automatic IxR Compensation) and Slip Compensation
■ In the μ line only the rated motor current (P401) was used in the Automatic IxR Compensation and the Slip Compensation functions. In the μ line the rated motor power factor of the motor was considered as a fixed value and equal to 0.9.
\square Now in the new CFW-08, are used the parameters P401 and P407 (rated motor power factor). Thus:

$$
\text { P401 }\left.\right|_{\text {uline }} \cdot 0.9=\mathrm{P} 401 \times\left.\mathrm{P} 407\right|_{\text {CFW-08 }}
$$

Example: When in an application with the μ line the following setting was required: $\mathrm{P} 401=3.8 \mathrm{~A}$, now with the new CFW-08 you must perform the following setting: $\mathrm{P} 401=3.8 \mathrm{~A}$ and $\mathrm{P} 407=0.9$
or
$\mathrm{P} 407=$ rated $\cos \varnothing$ of the used motor and $\mathrm{P} 401=3.8 \times \frac{0.9}{\mathrm{P} 407}$

Parameters existing only in Special Software Versions of the μ line

a) Quick Inputs
\square In the new CFW-08, the response time of the the digital inputs is 10 ms (max.).
\square In addition, the minimum acceleration and deceleration time was reduced from 0.2 s (μ line) to 0.1 s (CFW-08). Besides the DC braking process can be interrupted before it has been concluded, for instance, when a new enabling is required.
b) Other changes
(7) P120=2-digital reference backup via P121 independently of the reference source.
园 P265=14-DI3: multispeed using ramp \#2.

New Parameters and Functions

0 The reference 1 of the multispeed that was in Parameter P121 (in μ line) is now in Parameter P124 (in CFW-08).
\square The DC link regulation level (ramp holding) can now be programmed in Parameter P151 - in the μ line this level was fixed to 377V for the 200-240V line and 747V for the 380-480V line.
\square Also the programming way of Parameter P302 has changed. In the μ line P302 was related to the voltage applied to the output during the DCbraking, now in the new CFW-08, P302 defines the DC Braking Current.
\square PID regulator.
\square Suammarizing, the new parameters are: P009, P040, P124, P151, P178, P202, P203, P205, P219, P238, P239, P240, P251, P252, P279, P399, P400, P402, P403, P404, P407, P408, P409, P520, P521, P522, P525, P526, P527 e P528.

2.4 CFW-08 IDENTIFICATION

Lateral Nameplate of the CFW-08

Frontal Nameplate of the CFW-08 (under the keypad)

Note: To remove the keypad, see instructions in 8.1.1 (Figure 8.2).

Figure 2.4 - Description and location of the nameplates
HOW TO SPECIFY THE CFW-08 MODEL:

CFW-08	0040	B	2024	P	0	00	00	00	00	00	00	Z
WEG Series 08 Frequency Inverter	Rated Output Current for 200 to 240V: 0016=1.6A 0026=2.6A $0040=4.0 \mathrm{~A}$ 0070=7.0A 0073=7.3A $0100=10 \mathrm{~A}$ $0160=16 \mathrm{~A}$ 380 to 480 V : $0010=1.0 \mathrm{~A}$ 0016=1.6A 0026=2.6A 0027=2.7A $0040=4.0 \mathrm{~A}$ $0043=4.3 \mathrm{~A}$ 0065=6.5A $0100=10 \mathrm{~A}$ $0130=13 \mathrm{~A}$ $0160=16 \mathrm{~A}$	Number of phases of the power supply: S=single phase T=three phase $\mathrm{B}=$ single phase or three phase	Power Supply: $2024=$ $200 \text { to } 240 \mathrm{~V}$ $3848=$ $380 \text { to } 480 \mathrm{~V}$	Manual Language: $\mathrm{P}=$ Portug. E=English S= Spanish $\mathrm{F}=$ French G=German	Options: S= standard $\mathrm{O}=$ with optiions	Degree of Protection: Blank = standard N1 = Nema 1	Human Machine Interface: blank standard SI= without interface (with dummy panel)	Control Board: Blank = standard control A1 = control 1 (Plus Version)	RFI Filter: Blank= without filter FA= Class A RFI filter (internal or footprint)	Special Hardware: $00=$ none	Special Software: $00=$ none	End Code

NOTE!

0 The Option field (S or O) defines if the CFW-08 is a standard version or if it will be equipped with any optional devices. If the standard version is required, the specification code ends here.
The model number has always the letter Z at the end. For example:
CFW080040S2024ESZ = standard 4.0ACFW-08 inverter, single-phase at 200...240V input with manual in English.

For the effect of this code, the standard product is conceived as follows:

- CFW-08 with standard control board.
- Degree of protection: NEMA 1 for the models 13 and 16A/380-480V; IP20 for the other models.

If the CFW-08 is equipped with any optional devices, you must fill out all fields in the correct sequence up to the last optional device, the model number is completed with the letter Z. It is not necessary to indicate the code number 00 for those optional devices that are standard or that will not be used.

Thus, for instance if the product above is required with NEMA 1 degree of protection:
CFW080040S2024EON1Z = CFW-08 inverter, 4A, single-phase, 200...240V input, with manual in English language and with kitf for NEMA 1 degree of protection.
\square The CFW-08 Plus is formed by the inverter and the control board 1. Example: CFW080040S2024EOA1Z.

7 7.0 and $16.0 \mathrm{~A} / 200-240 \mathrm{~V}$ and for all $380-480 \mathrm{~V}$ models are just available with three-phase power supply.

0 A RFI Class A filter (optional) can be installed inside the inverter in models 7.3 and 10A/200-240V (single-phase) and 2.7, 4.3, 6.5, 10, 13 and 16A/380-480V. Models 1.6, 2.6 and 4.0A/200-240V (single-phase) and 1.0, 1.6, 2.6 and 4.0A/380-480V can be provided mounted on a footprint RFI Class A filter (optional).
$\boxed{\square}$ The listing of the existing models (voltage/current) is shown in item 9.1.

2.5 Receiving and Storing

The CFW-08 is supplied in cardboard boxes.
The outside of the packing box has a nameplate that is identical to that on the CFW-08.
Please check if the CFW-08 is the one you ordered.
Check if the:
\square CFW-08 nameplate data matches with your purchase order.
\square The equipment has not been damaged during transport.
If any problem is detected, contact the carrier immedately.
If the CFW-08 is not installed immediately, store it in a clean and dry room (storage temperatures between $-25^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$). Cover it to protect it against dust, dirt or other contamination.

3.1 MECHANICAL INSTALLATION

INSTALLATION

3.1.1 Environment

 installation of the CFW-08. operation.This chapter describes the procedures for the electrical and mechanical

These guidelines and suggestions must be followed for proper CFW-08

The location of the inverter installation is an important factor to assure good performance and high product reliability. For proper installation, we make the following recommendations:
\square Avoid direct exposure to sunlight, rain, high moisture and sea air.
\square Avoid exposure to gases or explosive or corrosive liquids;
\square Avoid exposure to excessive vibration, dust, oil or any conductive particles or materials.

Environmental Conditions:
\square Temperature : 32...104우 ($0 \ldots 40^{\circ} \mathrm{C}$) - nominal conditions. 32...122우 $\left(0 \ldots 50^{\circ} \mathrm{C}\right)$ - with 2% current derating for each $1.8^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$ degree above $104{ }^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.
マ Relative Air Humidity: 5\% to 90\% - non-condensing.
■ Maximum Altitude: $3,300 \mathrm{ft}(1000 \mathrm{~m})$ - nominal conditions. $3,300 \ldots 13,200 \mathrm{ft}(1000 \ldots 4000 \mathrm{~m}$) - with 10% current reduction for each $3,300 \mathrm{ft}(1000 \mathrm{~m})$ above $3,300 \mathrm{ft}(1000 \mathrm{~m})$.
\square Pollution Degree: 2 (according to EN50178 and UL508C)

NOTE!

When inverters are installed in panels or in closed metallic boxes, adequate cooling is required to ensure that the temperature arounds the inverter will not exceed the maximim allowed temperature. See Dissipated Power in Section 9.1.

3.1.2 Mounting Specification

Figure 3.1 - Free Space for Cooling

CFW-08 Model	A		B		C		D	
1.6A / 200-240V	30 mm	1.18 in	5 mm	0.20 in	50 mm	2 in	50 mm	2 in
2.6A / 200-240V								
4.0A / 200-240V								
$7.0 \mathrm{~A} / 200-240 \mathrm{~V}$								
1.0A / 380-480V								
1.6A / $380-480 \mathrm{~V}$								
$2.6 \mathrm{~A} / 380-480 \mathrm{~V}$								
4.0A / 380-480V								
7.3A/200-240V	35 mm	1.38 in	15 mm	0.59 in	50 mm	2 in	50 mm	2 in
10.0A / 200-240V								
16.0A / 200-240V								
2.7A / 380-480V								
4.3A / 380-480V								
6.5A / 380-480V								
10.0A / 380-480V								
13.0A / 380-480V	40 mm	1.57 in	30 mm	1.18 in	50 mm	2 in	50 mm	2 in
16.0A / 380-480V								

Table 3.1 - Recommended free spaces
\square Install the inverter in vertical position.
\square Leave free space around the inverter as indicated in Table 3.1.
\square Do not install heat sensitive components immediately above the inverter.
\square When inverters are installed side by side, maintain the minimum recommended distance B.
\square When inverters are installed top and bottom, maintain the minimum recommended distance $A+C$ and deflect the hot air coming from the inverter below.
\square Install the inverter on a flat surface.
External dimensions and mounting holes are according to Fig. 3.2.
0 For CFW-08 installation procedures, see Fig. 3.3
Ø Provide independent conduits for signal, control and power conductors. (Refer to Electrical Installation). Separate the motor cables from the other cables.

Figure 3.2 - Dimensional Drawings of the CFW-08

	Dimensions			Fixing base				Mounting Screw	Weigth lb (kg)	Degree of Protection
Inverter Model	$\begin{array}{\|c} \hline \text { Width } L \\ \text { in } \\ (\mathrm{mm}) \\ \hline \end{array}$	$\begin{aligned} & \text { Height } \mathrm{H} \\ & \text { in } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Depth P } \\ \text { in } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	A in (mm)	B in (mm)	C in (mm)	D in (mm)			
1.6A / 200-240V	$\begin{aligned} & 2.95 \\ & (75) \\ & \hline \end{aligned}$	$\begin{array}{r} 5.95 \\ (151) \\ \hline \end{array}$	$\begin{array}{r} 5.16 \\ (131) \\ \hline \end{array}$	$\begin{aligned} & \hline 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.08 \\ (129) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 0.20 \\ (5) \\ \hline \end{array}$	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & (\mathrm{M} 4) \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \\ \hline \end{gathered}$	IP20 / NEMA1
2.6A / 200-240V	$\begin{aligned} & 2.95 \\ & (75) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.95 \\ & (151) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.16 \\ & (131) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\left(\begin{array}{c} 5.08 \\ (129) \end{array}\right.$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \end{gathered}$	IP20 / NEMA1
4.0A / 200-240V	$\begin{array}{r} 2.95 \\ (75) \\ \hline \end{array}$	$\begin{array}{r} 5.95 \\ (151) \\ \hline \end{array}$	$\begin{array}{r} 5.16 \\ (131) \\ \hline \end{array}$	$\begin{aligned} & 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 5.08 \\ (129) \\ \hline \end{array}$	$\begin{gathered} 0.20 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & (\mathrm{M} 4) \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \end{gathered}$	IP20 / NEMA1
7.0A / 200-240V	$\begin{aligned} & 2.95 \\ & (75) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5.95 \\ (151) \\ \hline \end{gathered}$	$\begin{gathered} 5.16 \\ (131) \\ \hline \end{gathered}$	$\begin{aligned} & 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.08 \\ & (129) \end{aligned}$	$\begin{gathered} 0.20 \\ \hline(5) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 0.24 \\ (6) \end{array}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \end{gathered}$	IP20 / NEMA1
7.3A / 200-240V	$\begin{array}{r} 4.53 \\ (115) \\ \hline \end{array}$	$\begin{array}{r} 7.87 \\ (200) \\ \hline \end{array}$	$\begin{array}{r} 5.91 \\ (150) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3.98 \\ (101) \\ \hline \end{array}$	$\begin{aligned} & 6.97 \\ & (177) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 0.28 \\ \hline \end{array}$	$\begin{gathered} 0.20 \\ (5) \\ \hline \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.4 \\ (2.0) \\ \hline \end{gathered}$	IP20 / NEMA1
10A / 200-240V	$\begin{array}{r} 4.53 \\ (115) \\ \hline \end{array}$	$\begin{array}{r} 7.87 \\ (200) \\ \hline \end{array}$	$\begin{array}{r} 5.91 \\ (150) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 3.98 \\ (101) \\ \hline \end{array}$	$\begin{aligned} & 6.97 \\ & (177) \\ & \hline \end{aligned}$	$\begin{gathered} 0.28 \\ \hline(7) \\ \hline \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & (\mathrm{M} 4) \\ & \hline \end{aligned}$	$\begin{gathered} 4.4 \\ (2.0) \\ \hline \end{gathered}$	IP20 / NEMA1
16A / 200-240V	$\begin{gathered} \hline 4.53 \\ (115) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7.87 \\ & (200) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.98 \\ & (101) \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 6.97 \\ (177) \\ \hline \end{array}$	$\begin{array}{\|c} 0.28 \\ (7) \end{array}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \end{aligned}$	$\begin{gathered} \hline 4.4 \\ (2.0) \\ \hline \end{gathered}$	IP20 / NEMA1
1.0A / 380-480V	$\begin{aligned} & \hline 2.95 \\ & (75) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5.95 \\ (151) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.16 \\ (131) \\ \hline \end{gathered}$	2.52 (64) 2.52	$\begin{array}{\|c\|} \hline 5.08 \\ (129) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.20 \\ (5) \\ \hline \end{array}$	$\begin{gathered} \hline 0.24 \\ (6) \\ \hline \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \\ & \hline \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \\ \hline \end{gathered}$	IP20 / NEMA1
1.6A / 380-480V	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{gathered} 5.95 \\ (151) \\ \hline \end{gathered}$	$\begin{aligned} & 5.16 \\ & (131) \end{aligned}$	$\begin{aligned} & 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 5.08 \\ (129) \\ \hline \end{array}$	$\begin{gathered} 0.20 \\ \hline \end{gathered}$	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & (\mathrm{M} 4) \\ & \hline \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \\ \hline \end{gathered}$	IP20 / NEMA1
2.6A / 380-480V	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 5.95 \\ & (151) \end{aligned}$	$\begin{aligned} & 5.16 \\ & (131) \end{aligned}$	$\begin{aligned} & 2.52 \\ & (64) \end{aligned}$	$\begin{gathered} 5.08 \\ (129) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	0.24 (6)	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \end{aligned}$	$\begin{gathered} \hline 2.2 \\ (1.0) \end{gathered}$	IP20 / NEMA1
2.7A / 380-480V	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{aligned} & 7.87 \\ & (200) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 3.98 \\ & (101) \end{aligned}$	$\begin{gathered} 6.97 \\ (177) \end{gathered}$	$\begin{gathered} 0.28 \\ (7) \end{gathered}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & (\mathrm{M} 4) \end{aligned}$	$\begin{gathered} \\ \hline 4.4 \\ (2.0) \end{gathered}$	IP20 / NEMA1
4.0A / 380-480V	$\begin{aligned} & 2.95 \\ & (75) \\ & \hline \end{aligned}$	$\begin{array}{r} 5.95 \\ (151) \\ \hline \end{array}$	$\begin{array}{r} 5.16 \\ (131) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 2.52 \\ (64) \\ \hline \end{array}$	$\begin{array}{\|c} 5.08 \\ (129) \\ \hline \end{array}$	$\begin{gathered} 0.20 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 0.24 \\ (6) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \\ & \hline \end{aligned}$	$\begin{gathered} 2.2 \\ (1.0) \\ \hline \end{gathered}$	IP20 / NEMA1
4.3A / 380-480V	$\begin{aligned} & 4.53 \\ & (115) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.87 \\ & (200) \\ & \hline \end{aligned}$	$\begin{array}{r} 5.91 \\ (150) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 3.98 \\ (101) \\ \hline \end{array}$	$\begin{aligned} & 6.97 \\ & (177) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 0.28 \\ (7) \\ \hline \end{array}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \\ & \hline \end{aligned}$	$\begin{gathered} 4.4 \\ (2.0) \\ \hline \end{gathered}$	IP20 / NEMA1
6.5A / 380-480V	$\begin{aligned} & 4.53 \\ & (115) \\ & \hline \end{aligned}$	$\begin{array}{r} 7.87 \\ (200) \\ \hline \end{array}$	$\begin{array}{r} 5.91 \\ (150) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.98 \\ (101) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.97 \\ (177) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.28 \\ (7) \\ \hline \end{array}$	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & (\mathrm{M} 4) \\ & \hline \end{aligned}$	$\begin{gathered} 4.4 \\ (2.0) \\ \hline \end{gathered}$	IP20 / NEMA1
10A / 380-480V	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{aligned} & 7.87 \\ & (200) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.98 \\ (101) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.97 \\ (177) \\ \hline \end{array}$	0.28 (7)	$\begin{gathered} 0.20 \\ (5) \end{gathered}$	$\begin{aligned} & 5 / 32 \\ & \text { (M4) } \end{aligned}$	$\begin{gathered} \hline 4.4 \\ (2.0) \end{gathered}$	IP20 / NEMA1
13A / 380-480V	$\begin{aligned} & 5.63 \\ & (143) \end{aligned}$	$\begin{aligned} & 7.99 \\ & (203) \end{aligned}$	$\begin{aligned} & 6.50 \\ & (165) \end{aligned}$	$\begin{array}{\|c\|} \hline 4.76 \\ (121) \end{array}$	$\begin{aligned} & 7.09 \\ & (180) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (11) \end{aligned}$	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & \text { (M5) } \end{aligned}$	$\begin{gathered} \hline 5.5 \\ (2.5) \end{gathered}$	NEMA1
16A / 380-480V	$\begin{aligned} & 5.63 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 7.99 \\ & (203) \end{aligned}$	$\begin{aligned} & 6.50 \\ & (165) \end{aligned}$	$\begin{array}{\|c\|} \hline 4.76 \\ (121) \\ \hline \end{array}$	$\begin{aligned} & 7.09 \\ & (180) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (11) \end{aligned}$	$\begin{aligned} & 0.39 \\ & (10) \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & \text { (M5) } \end{aligned}$	$\begin{gathered} 5.5 \\ (2.5) \\ \hline \end{gathered}$	NEMA1

Table 3.2 - Installation data (dimensions in mm) - Refer to Section 9.1

Figure 3.3 - Mounting procedures for CFW-08

3.2 ELECTRICAL INSTALLATION

3.2.1 Power / Grounding
 Connections

DANGER!

AC input disconnection: provide and AC input disconnecting switch to switch OFF the input power to the inverter.
This device shall disconnect the inverter from the AC input supply when required (e.g. during maintenances services).

DANGER!
This AC input disconnecting switch can not be used as an emergency stop device.

DANGER!
Be sure that the AC input power is disconnected before making any terminal connection.

DANGER!

The information below will be a guide to achieve a proper installation. Follow also all applicable local standards for electrical installations.

ATENTION!

Provide at least 10 in $(0.25 \mathrm{~m})$ spacing between the equipment and sensitive wirings and betwen the cables of the inverter and motor. For instance: PLCs, temperature monitoring devices, thermocouples, etc.

(a) Models 1.6-2.6-4.0-7.0A / 200-240V and 1.0-1.6-2.6-4.0A / 380-480V

(b) Models 7.3-10-16A / 200-240V e 2.7-4.3-6.5-10-13-16A / 380-480V

Note: (*) In case of single-phase power supply with phase and neutral cable, connect only the phase cable to the disconnecting switch.

Figure 3.4 - Power / Grounding Connections

DANGER!

The inverter must be grounded to a protective earth for safety purposes (PE). The earth or ground connection must comply with the local regulations.For grounding, use cables with cross sections as indicated in Table 3.3. Make the ground connection to a grounding bar or to the general grounding point (resistance $10<$ ohms). Do not share the ground wiring with other equipment that operate with high currents (for instance: high voltage motors, welding machines, etc). If several inverters are used together, refer to Figure 3.5.

Figure 3.5 - Grounding connections for more than one inverter

NOTE!
Do not use the neutral conductor for grounding purposes.

ATTENTION!

The AC input for the inverter must have a grounded neutral conductor.

NOTE!

\square The AC input voltage must be compatible with the inverter rated voltage.
\square The requirements for use of line reactors depends on several application factors. Refer to Section 8.15.
■ Capacitors for power factor correction are not required at the input (L/L1, N/L2, L3 or R, S, T) and they must not be connected at the
V output (U, V and W).
When inverters with dynamic braking (DB) are used, the DB resistor shall be mounted externally. Figure 8.21 shows how to connect the braking resistor. Size it according to the application, not exceeding the maximum current of the braking circuit. For the connection between inverter and the braking resistor, use twisted cable. Provide physical separation between this cable and the signal and control cables. When the DB resistor is mounted inside the panel, consider watt loss generated when the enclosure size and required ventilation are calculated.
\square When electromagnetic interference (EMI), generated by the inverter, interfers in the performance of other equipment, use shielded wires, or install the motor wires in metallic conduits. Connect one end of the shielding to the inverter grounding point and the other end to the motor frame. Always ground the motor frame. Ground the motor in the panel where the inverter is installed or ground it to the inverter. The inverter output wiring must be laid separately from the input wiring as well as from the control and signal cables.
0 The inverter is provided with electronic protection against motor overload. This protection must be set according to the specific motor. When the same inverter drives several motors, use individual overload realays for each motor. Maintain the electrical continuity of the motor cable shield.
0 If a disconnect switch or a contactor is inserted in the motor supply line, do not operate them with motor running or when inverter is enabled. Maintain the electrical continuity of the motor cable shield.
\square Use wire sizing and circuit breakers as recommended in Table 3.3. Tightening torque is as indicated in Table 3.4. Use $\left(70^{\circ} \mathrm{C}\right)$ copper wires only.

Amp Rating $[A]$	Power Cables $\left[\mathrm{mm}^{2}\right]$	Grounding Cables $\left[\mathrm{mm}^{2}\right]$	Circuit-Breaker	
		Current [A]	WEG Model	
1.0	1.5	2.5	4	DMW25-4
$1.6(200-240 \mathrm{~V})$	1.5	2.5	10	DMW25-6,3
$1.6(380-480 \mathrm{~V})$	1.5	2.5	4	DMW25-4
$2.6(200-240 \mathrm{~V})$	1.5	2.5	10	DMW25-10
$2.6(380-480 \mathrm{~V})$	1.5	2.5	6	DMW25-6.3
2.7	1.5	2.5	6	DMW25-6.3
$4.0(200-240 \mathrm{~V})$	1.5	2.5	15	DMW25-16
$4.0(380-480 \mathrm{~V})$	1.5	2.5	10	DMW25-10
4.3	1.5	2.5	10	DMW25-10
6.5	2.5	4.0	15	DMW25-16
7.0	2.5	4.0	10	DMW25-10
7.3	2.5	4.0	20	DMW25-20
10.0	2.5	4.0	30	DW125H-32
13.0	2.5	4.0	30	DW125H-25
16.0	2.5	4.0	35	DW125H-32

Table 3.3-Recommended wiring and circuit-breakers - use $70^{\circ} \mathrm{C}$ copper wires only

NOTE!

The wire sizing indicated in Table 3.3 are reference values only. The exact wire sizing, depends on the installation conditions and the maximum acceptable line voltage drop.

Inverter Model	Grounding Wiring		Power Cables	
	N.m	Lbf.in	N.m	Lbf.in
$1.6 \mathrm{~A} / 200-240 \mathrm{~V}$	0.4	3.5	1.0	8.68
$2.6 \mathrm{~A} / 200-240 \mathrm{~V}$	0.4	3.5	1.0	8.68
$4.0 \mathrm{~A} / 200-240 \mathrm{~V}$	0.4	3.5	10	8.68
$7.0 \mathrm{~A} / 200-240 \mathrm{~V}$	0.4	3.5	1.0	8.68
$7.3 \mathrm{~A} / 200-240 \mathrm{~V}$	0.4	3.5	1.76	15.62
$10.0 \mathrm{~A} / 200-240 \mathrm{~V}$	0.4	3.5	1.76	15.62
$16.0 \mathrm{~A} / 200-240 \mathrm{~V}$	0.4	3.5	1.76	15.62
$1.0 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.2	100
$1.6 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.2	10.0
$2.6 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.2	10.0
$2.7 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.76	15.62
$4.0 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.2	10.0
$4.3 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.76	15.62
$6.5 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.76	15.62
$10.0 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.76	15.62
$13.0 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.76	15.62
$16.0 \mathrm{~A} / 380-480 \mathrm{~V}$	0.4	3.5	1.76	15.62

Table 3.4-Recommended tightening torque for power and grounding connections

NOTE!

Supply line capacity:
The CFW-08 is suitable for use in circuits capable of supplying not more than symmetrical 30.000Arms (240/480V).
The CFW-08 can be installed on power supplies with a higher fault level if an adequate protection is provided by fuses or circuit breaker.

Description of the power terminals:
T/L1, N/L2 and L3 (R, S and T): AC supply line 200-240 V models (except 7.0A and 16A) can be opeated with two phases (single-phase operation) without current derating. In this case, the AC supply can be connected to any 2 of the 3 input terminals.

■ U, V and W: Motor connection.
\square-UD: Negative pole of the DC link circuit.
Not available on the models $1,6-2,6-4,0-7,0 \mathrm{~A} / 200-240 \mathrm{~V}$ and on the models $1.0-1.6-2.6-4.0 \mathrm{~A} / 380-480 \mathrm{~V}$. This pole is used when inverter shall be supplied with DC voltage (jointly with the +UD terminal). To avoid wrong connection of the braking resistor (mounted outside the inverter), inverter is supplied with a rubber plug on this terminal that must be removed when the use of the -UD terminal is required.
\square BR: Connection for Dynamic Braking Models (DB).
Not available on types 1.6-2.6-4.0-7.0A/200-240V and on models 1.0-1.6-2.6-4.0A/380-480V.

■ +UD: Positive pole of the DC link ciruit. Not available on models 1.6-2.6-4.0-7.0A/200-240V and on models 1.0-1.6-2.6-4.0A/380-480V. This terminal is used to connect the dynamic braking (DB) (jointly with the BR terminal) or when inverter shall be supplied with DC voltage (jointly with the -UD terminal).

(a) models 1.6-2.6-4.0-7.0A/200-240V and 1.0-1.6-2.6-4.0A/380-480V

(b) models $7.3-10-16 \mathrm{~A} / 200-240 \mathrm{~V}$ and $2.7-4.3-6.5-10 \mathrm{~A} / 380-480 \mathrm{~V}$

(c) models $13-16 \mathrm{~A} / 380-480 \mathrm{~V}$

Figure 3.6 - Power terminals
3.2.3 Location of the Power, Grounding and Control Connections

(a) Models 1.6-2.6-4.0-7.0-7.3-10-16A/200-240V and 1.0-1.6-26-2.7-40-4.3-65-10A/380-480V

3.2.4 Control Wiring

(b) Models 13-16A/380-480V

Figure 3.7 - Location of the power/grounding and control connections
The control wiring (analog inputs/outputs, digital inputs and relay outputs is made on the XC1 connector of control board (see location in Figure 3.7, Section 3.2.3).
There are two configurations for the control board: standard version (CFW-08 line) and Plus version (CFW-08 Plus line), as shown below:

Note: NC = Normally Closed Contact, NO = Normally Open Contact
Figure 3.8-XC1 control terminal description (standard control board - CFW-08)

INSTALLATION AND CONNECTION

Figure 3.9-XC1 control terminal description of the control board 1 (CFW-08 Plus)

Figure 3.10 - Dip switch position for 0 ...10V/4 ... 20mA selection

As a default the analog input(s) is(are) selected as $0 . .10 \mathrm{~V}$. This can be changed using dip switch S1 on the control board and parameters P235 and P239 (see note below).

Analog Input	Factory Deafult Setting	Dip Switch	Selection
Al1	Frequency / Speed Reference (remote mode)	S1.1	OFF: $0 \ldots 10 \mathrm{~V}$ ON: $4 \ldots 20 \mathrm{~mA}$ or $0 \ldots 2 \mathrm{~mA}$
Al2	No function	S1.2	OFF: $0 \ldots 10 \mathrm{~V}$ ON: $4 \ldots 20 \mathrm{~mA}$ or $0 \ldots 20 \mathrm{~mA}$

Table 3.5 - Dip switch configuration

NOTE!

\square Jumpers S 1 are factory set to OFF position ($0 \ldots 10 \mathrm{~V}$ signal).
目 If it's used a $4 \ldots 20 \mathrm{~mA}$ signal, set parameter P235 and/or P239, that defines the signal type at Al1 and Al2, respectively.
园 The parameters related to the analog inputs are: P221, P222, P234, P235, P236, P238, P239 e P240. For more details, please refer to Chapter 6.

During the signal and control wire installation note please the following:

1) Cable cross section: $20 \ldots 14$ AWG ($0.5 \ldots 1.5 \mathrm{~mm}^{2}$).
2) Max. Torque: 0.50 N.m (4.50 Ibf.in).
3) XC 1 wiring must connected with shielded cables and installed separately at a distance of 10 cm each other for lengths up to 100 m and at distance of 25 cm each other for lengths over 100 m . If the crossing of these cables is unavoidable, install them perpendicular, maintaining a mimimum separation distance of $2 \mathrm{in}(5 \mathrm{~cm})$ at the crossing point.

Connect the shield as shown below:

Figure 3.11 - Shield connection
4) For wiring distances longer than $150 \mathrm{ft}(50 \mathrm{~m}$), it's necessary to use galvanic isolators for the XC1:5... 9 analog signals.
5) Relays, contactors, solenoids or eletromagnetic braking coils installed near inverters can generate interferences in the control circuit. To eliminate this interference, connect RC suppressor in parallel with the coils of AC relays. Connect free-wheeling diode in case of DC relays.
6) When external keypad (HMI) is used (refer to Chapter 8), separete the cable that connects the keypad to the inverter from other cables, maintaining a minimum distance of 4 in $(10 \mathrm{~cm})$ between them.
7) When analog reference (Al 1 or Al 2) is used and the frequency oscillates (problem caused by eletromagnetic interference) connect XC1:5 to the inverter heatsink.

3.2.5 Typical Terminal Connections

Connection 1 - Keypad Start/Stop (Local Mode)

With the factory default programming, you can operate the inverter in local mode with the minimum connections shown in Figure 3.4 (Power) and without control connections. This operation mode is recommended for users who are operating the inverter for the first time. Note that there is no need of connection of control terminals.

For start-up according to this operation mode, refer to Chapter 4.

Connection 2-2-Wire Start/Stop (Remote Mode)

Valid for factory default programming and inverter operating in remote mode. For the factory default programming, the selection of the operation mode (local/remote) is made via the key $\frac{100}{2=4}$ (default is local).

Figure 3.12-XC1 wiring for connection 2

NOTE!

7 The frequency reference can be sent via Al1 analog input (as shown in figure above), via keypad HMI-CFW08-P, or via any other source (as described in Chapter 6 - P221 and P222).
\square When a line fault occurs by using this type of connection with switch S3 at position "RUN", the motor will be enabled automatically as soon as the line is re-established.

Connection 3-3 Wire Start/Stop

Function enabling (three wire control):
Set DI1 to Start: P263=14
Set DI2 to Stop: P264=14
Set P229=1 (command via terminals) if you want the 3-wire control in local mode.
Set P230=1 (command via terminals) if you want the 3-wire control in remote mode.

FWD / REV Selection:
Program P265=0 (DI3) or P266=0 (DI4), according to the selected digital input (DI).
If P265 and $\mathrm{P} 266 \neq 0$, the direction of rotation is always FWD.

Figure 3.13-XC1 wiring for connection 3

NOTE!

Q S1 and S2 are push buttons, NO and NC contact, respectively.
\square The speed reference can be via Analog Input Al1 (as in connection 2), via keypad (HMI-CFW08-P), or via any other source (see Chapter 6 P221 and P222).
When a line fault occurs by using this connection with the motor running and the S1 and S2 switches are in original position (S1 openned and S 2 closed), the inverter will not be enabled automatically as soon as the line is re-restablished.
The Start/Stop function is described in Chapter 6.

Connection 4-FWD RUN / REV RUN

Parameter to be programmed: Set D11 to Forward Run : P263 = 8
Set DI2 to Reverse Run: P264 = 8
Make sure the inverter commands are via terminals, i.e., P229=1 to local mode or $\mathrm{P} 230=1$ to remote mode.

Figure 3.14-XC1 wiring for connection 4

NOTE!

『 The speed reference can be via Analog Input Al1 (as in connection 2), via keypad (HMI-CFW08-P), or via any other source (see description of parameters P221 and P222 in Chapter 6).
\square When a line fault occurs, this connection with switch S1 or switch S 2 is closed, the motor will be enabled automatically as soon as the line is re-restablished.

3.3 European EMC Directive Requirements for Conforming Installations

3.3.1 Installation

The CFW-08 inverter series was designed considering safety and EMC (ElectroMagnetic Compatibility) aspects.
The CFW-08 units do not have an intrinsic function until connected with other components (e. g. a motor). Therefore, the basic product is not CE marked for compliance with the EMC Directive. The end user takes personal responsibility for the EMC compliance of the whole installation. However, when installed according to the recommendations described in the product manual and including the recommended filters and EMC measures the CFW-08 fulfill all requirements of the EMC Directive (89/336/EEC) as defined by the EMC Product Standard for Adjustable Speed Electrical Power Drive Systems EN61800-3.
Compliance of the CFW-08 series is based on the testing of the representative models. A Technical Construction File was checked and approved by a Competent Body.
Figure 3.15 below shows the EMC filters connection.

Obs.: Single-phase input inverters use single-phase filters and only L1/L and L2/N are used.
Figure 3.15 - EMC filters connection - general condition
The following items are required in order to have a conforming installation:

1) The motor cable must be armored, flexible armored or installed inside a metallic conduit or trunking with equivalent attenuation. Ground the screen/ metallic conduit at both ends (inverter and motor).
2) Control (I/O) and signal wiring must be shielded or installed inside a metallic conduit or trunking with equivalent attenuation.
3) The inverter and the external filter must be mounted on a common metallic back plate with a positive electrical bond and in close proximity to one another. Ensure that a good electrical connection is made between the heatsink (inverter) / frame (external filter) and the back plate.
4) The length of the wiring between filter and inverter must be kept as short as possible.
5) The cable's shielding must be solidly connected to the common back plate, using a metal bracket.
6) Grounding as recommended in this manual.
7) Use short and thick earthing cable to earth the external filter or inverter. When an external filter is used, only use an earth cable at filter input the inverter earth connection is done by the metallic back plate.
8) Earth the back plate using a braid, as short as possible. Flat conductors (e.g. braids or brackets) have lower impedance at high frequencies.
9) Use cable glands whenever possible.

INSTALLATION AND CONNECTION

3.3.2 Inverter Models and Filters

Table 3.6 below shows the inverter models and the respective RFI filter and the EMC category number. A description of each EMC category is given in item 3.3.3. The characteristics of the footprint and external input RFI filters are given in item 3.3.4.

Id	Inverter Model	Input RFI Filter	EMC Category	Dimensions (Width x Height x Depth)
1	CFW080016S2024...FAZ	Built-in filter [FEX1-CFW08 (footprint filter)]	Category I (industrial)	79x190x182mm
2	CFW080026S2024...FAZ			
3	CFW080040S2024...FAZ			
4	CFW080016B2024...FAZ (single-phase input)			
5	CFW080026B2024...FAZ (single-phase input)			
6	CFW080040B2024...FAZ (single-phase input)			
7	CFW080073B2024...FAZ (single-phase input)	Built-in filter		
8	CFW080100B2024...FAZ (single-phase input)			$115 \times 200 \times 150 \mathrm{~mm}$
9	CFW080016S2024...	FS6007-16-06 (external filter)	Category II (domestic)	Inverter: $75 \times 151 \times 131 \mathrm{~mm}$ Filter: $85.5 \times 119 \times 57.6 \mathrm{~mm}$
10	CFW080026S2024...			
11	CFW080040S2024...			
12	CFW080016B2024... (single-phase input)			
13	CFW080026B2024... (single-phase input)			
14	CFW080040B2024... (single-phase input)			
15	CFW080016B2024... (three-phase input)	FS3258-7-45 (external filter)		Inverter: $75 \times 151 \times 131 \mathrm{~mm}$ Filter: $40 \times 190 \times 70 \mathrm{~mm}$
16	CFW080026B2024... (three -phase input)			
17	CFW080040B2024... (three -phase input)			
18	CFW080070T2024...	FN3258-16-45 (external filter)		Inverter: $75 \times 151 \times 131 \mathrm{~mm}$ Filter: $45 \times 250 \times 70 \mathrm{~mm}$
19	CFW080073B2024... (single-phase input)	FS6007-25-08 (external filter)		Inverter: $115 \times 200 \times 150 \mathrm{~mm}$ Filter: $85.5 \times 119 \times 57.6 \mathrm{~mm}$
20	CFW080073B2024... (three-phase input)	FN3258-16-45 (external filter)		Inverter: $115 \times 200 \times 150 \mathrm{~mm}$ Filter: $45 \times 250 \times 70 \mathrm{~mm}$
21	CFW080100B2024... (single-phase input)	FS6007-36-08 (external filter)		Inverter: $115 \times 200 \times 150 \mathrm{~mm}$ Filter: $85.5 \times 119 \times 57.6 \mathrm{~mm}$
22	CFW080100B2024... (three-phase input)	FN3258-16-45 (external filter)		Inverter: $115 \times 200 \times 150 \mathrm{~mm}$ Filter: $45 \times 250 \times 70 \mathrm{~mm}$
23	CFW080160T2024...	FN3258-30-47 (external filter)		Inverter: $115 \times 200 \times 150 \mathrm{~mm}$ Filter: $50 \times 270 \times 85 \mathrm{~mm}$
24	CFW080010T3848...FAZ	Built-in filter [FEX2-CFW08 (footprint filter)]	Category I (industrial)	$79 \times 190 \times 182 \mathrm{~mm}$
25	CFW080016T3848...FAZ			
26	CFW080026T3848...FAZ			
27	CFW080040T3848...FAZ			
28	CFW080027T3848...FAZ	Built-in filter		$115 \times 235 \times 150 \mathrm{~mm}$
29	CFW080043T3848...FAZ			
30	CFW080065T3848...FAZ			
31	CFW080100T3848...FAZ			
32	CFW080130T3848...FAZ			$143 \times 203 \times 165 \mathrm{~mm}$
33	CFW080160T3848...FAZ			

Id	Inverter Model	Input RFI Filter	EMC Category	Dimensions (Width \times Height \times Depth)
34	CFW080010T3848...	FN3258-7-45 (external filter)	Category II (domestic)	
35	CFW080016T3848...			ter: $75 \times 151 \times 131 \mathrm{~m}$
36	CFW080026T3848...			
37	CFW080040T3848...			
38	CFW080027T3848...			
39	CFW080043T3848...			
40	CFW080065T3848...	FN3258-16-45 (external filter)		Inverter: 115x200x150mm
41	CFW080100T3848...			Filter: $45 \times 250 \times 70 \mathrm{~mm}$
42	CFW080130T3848...			Inverter: $143 \times 203 \times 165 \mathrm{~mm}$ Filter: $45 \times 250 \times 70 \mathrm{~mm}$
43	CFW080160T3848...	FN3258-30-47 (external filter)		Inverter: $143 \times 203 \times 165 \mathrm{~mm}$ Filter: $50 \times 270 \times 85 \mathrm{~mm}$

Table 3.6 - Inverter models list with filters and EMC category

Obs.:

1) Category II systems must be mounted inside a metallic cabinet in order to have radiated emissions below the limits for first environment and restricted distribution (see item 3.3.3). Category I systems do not require a metallic cabinet. Exception: models 7 and 8, that need to be mounted inside a cabinet to pass in the radiated emission test for second environment and unrestricted distribution (see item 3.3.3). When a metallic cabinet is required, the maximum length of the remote keypad cable is 3 m . In this case, the control (I/O) and signal wiring must be located inside the cabinet and the remote keypad can be installed in the cabinet front door (see items 8.3.1 and 8.5).
2) The maximum switching frequency is 10 kHz . Exception: 5 kHz for models 24 up to 33 (category I, 380-480V models). For category I systems see also note 7 .
3) The maximum motor cable length is 20 m for models $9,10,11,12,13$, $14,15,16,17,18,19,20,21,22,23,34,35,36$ and $37,10 \mathrm{~m}$ for models $1,2,3,4,5,6,7,8,24,25,26,27,38,39,40,41,42$ and 43 and 5 m for models $28,29,30,31,32$ and 33 . For category I systems see also note 7 .
4) In models 28, 29, 30 and 31 (see also note 7), a CM choke at inverter output is required: TOR1-CFW08, 1 turn. The toroid is mounted inside the N1 kit that is provided with these models. For installation see figure 3.15.
5) In models 38, 39, 40, 41, 42 and 43 , a CM choke at filter input is required: TOR2-CFW08, 3 turns. For installation see figure 3.15.
6) In models $38,39,40$ and 41 , it is required to use a shielded cable between the external filter and the inverter.
7) Category I systems were also tested using second environment unrestricted distribution limits for conducted emissions (for definitions see notes 2 and 3 of item 3.3.3). In this case:

- the maximum cable length is 30 m for models $1,2,3,4,5,6,7,8$, 32 and 33 and 20 m for models $24,25,26,27,28,29,30$ and 31 ;
- the maximum switching frequency is 10 kHz for models $28,29,30$ and 31 and 5 kHz for models $1,2,3,4,5,6,7,8,24,25,26,27,32$ and 33 ;
- models 28, 29, 30 and 31 do not require any CM choke at inverter output (as stated in note 4).

3.3.3 EMC Categories Description

There are two EMC categories: Category I for industrial applications and Category II for residential applications, as described below.

Category I

EMC phenomenon	Basic standard for test method	Level
Emission:		
Conducted emissions (mains terminal disturbance voltage - freq band 150 kHz to 30 MHz)	IEC/EN61800-3	First environment (*1), restricted distribution (*4,5) - Class A
Radiated emissions (electromagnetic radiation disturbance - freq band 30 MHz to 1000 MHz)	IEC/EN61800-3	Second environment (*2), unrestricted distribution (*3)
Immunity:		
Electrostatic discharge (ESD)	IEC 61000-4-2	6 kV contact discharge
Fast transient-burst	IEC 61000-4-4	$4 \mathrm{kV} / 2.5 \mathrm{kHz}$ (capacitive clamp) input cable; $2 \mathrm{kV} / 5 \mathrm{kHz}$ control cables; $2 \mathrm{kV} / 5 \mathrm{kHz}$ (capacitive clamp) motor cable; $1 \mathrm{kV} / 5 \mathrm{kHz}$ (capacitive clamp) external keypad cable
Conducted radio-frequency common mode	IEC 61000-4-6	0.15 to 80 MHz ; 10V; $80 \% \mathrm{AM}(1 \mathrm{kHz})$ - motor control and remote Keypad cable
Surge	IEC 61000-4-5	$1.2 / 50 \mu \mathrm{~s}, 8 / 20 \mu \mathrm{~s} ;$ 1 kV coupling line to line; 2 kV coupling line to earth
Radio-frequency electromagnetic field	IEC 61000-4-3	80 to $1000 \mathrm{MHz} ; 10 \mathrm{~V} / \mathrm{m} ; 80 \% \mathrm{AM} \mathrm{(1kHz})$

Category II

EMC phenomenon	Basic standard for test method	Level
Emission:		
Conducted emissions (mains terminal disturbance voltage - freq band 150 kHz to 30 MHz)	IEC/EN61800-3	First environment (*1), unrestricted distribution (*3) Class B
Radiated emissions (electromagnetic radiation disturbance - freq band 30 MHz to 1000 MHz)	IEC/EN61800-3	First environment (*1), restricted distribution (*4,5)
Immunity:		
Electrostatic discharge (ESD)	IEC 61000-4-2	6kV contact discharge
Fast transient-burst	IEC 61000-4-4	$4 \mathrm{kV} / 2.5 \mathrm{kHz}$ (capacitive clamp) input cable; $2 \mathrm{kV} / 5 \mathrm{kHz}$ control cables; $2 \mathrm{kV} / 5 \mathrm{kHz}$ (capacitive clamp) motor cable; $1 \mathrm{kV} / 5 \mathrm{kHz}$ (capacitive clamp) external keypad cable
Conducted radio-frequency common mode	IEC 61000-4-6	$\begin{aligned} & 0.15 \text { to } 80 \mathrm{MHz} ; 10 \mathrm{~V} \text {; } \\ & 80 \% \mathrm{AM}(1 \mathrm{kHz}) \text { - motor control and remote Keypad cable } \end{aligned}$
Surge	IEC 61000-4-5	1.2/50 $\mu \mathrm{s}, 8 / 20 \mu \mathrm{~s}$; 1 kV coupling line to line; 2 kV coupling line to earth
Radio-frequency electromagnetic field	IEC 61000-4-3	80 to $1000 \mathrm{MHz} ; 10 \mathrm{~V} / \mathrm{m} ; 80 \% \mathrm{AM}$ (1kHz)

Obs.:

1) First environment: environment that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes.
2) Second environment: environment that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.
3) Unrestricted distribution: mode of sales distribution in which the supply of equipment is not dependent on the EMC competence of the customer or user for the application of drives.
4) Restricted distribution: mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of drives.
(source: these definitions were extracted from the product standard IEC/EN61800-3 (1996) + A11 (2000))
5) This is a product of restricted sales distribution class according to the product standard IEC/EN61800-3 (1996) + A11 (2000). In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
6) The harmonic current emissions defined by the standards IEC/EN61000-3-2 and EN61000-3-2 / A14 do not apply because the CFW-08 inverter series are intended for professional applications.

3.3.4 EMC Filters
 Characteristics Filter

Filter	WEG P/N	Rated current	Weight	Dimensions (Width x Height x Depth)	Drawings
FEX1-CFW08	417118238	10A	0.6kg	$79 \times 190 \times 51 \mathrm{~mm}$	Fig. 3.16
FEX2-CFW08	417118239	5A			
FS6007-16-06	0208.2072	16A	0.9 kg	$85.5 \times 119 \times 57.6 \mathrm{~mm}$	Fig. 3.17
FS6007-25-08	0208.2073	25A	1.0 kg	$85.5 \times 119 \times 57.6 \mathrm{~mm}$	Fig. 3.18
FS6007-36-08	0208.2074	36A	1.0 kg		
FN3258-7-45	0208.2075	7A	0.5kg	$40 \times 190 \times 70 \mathrm{~mm}$	Fig. 3.19
FN3258-16-45	0208.2076	16A	0.8kg	$45 \times 250 \times 70 \mathrm{~mm}$	
FN3258-30-47	0208.2077	30A	1.2 kg	$50 \times 270 \times 85 \mathrm{~mm}$	
TOR1-CFW08	417100895	-	80g	$\begin{aligned} & \phi_{\mathrm{e}}=35 \mathrm{~mm}, \\ & \mathrm{~h}=22 \mathrm{~mm} \end{aligned}$	Fig. 3.20
TOR2-CFW08	417100896	-	125g	$\begin{aligned} & \phi_{\mathrm{e}}=52 \mathrm{~mm}, \\ & \mathrm{~h}=22 \mathrm{~mm} \end{aligned}$	Fig. 3.21

Table 3.7 - EMC filters characteristics

Figure 3.16-FEX1-CFW08 and FEX2-CFW08 footprint filter drawing

Figure 3.18-FS6007-25-08 and FS6007-36-08 external filter drawing

Figure 3.19-FS3258-xx-xx external filter drawing

Toroid: Thornton NT35/22/22-4100-IP12R (WEG P/N 0208.2102)

Figure 3.20-TOR1-CFW08 drawing

Toroid: Thornton NT52/32/20-4400-IP12E (WEG P/N 0208.2103)

Figure 3.21-TOR2-CFW08 drawing

EU DECLARATION OF CONFORMITY

We
Manufacturer's Name: WEG Indústrias S/A - Automaçāo
Address: Rua Waldemar Grubba, 3000
89256-900 Jaraguá do Sul - SC - Brazil
Telephone: +55473724515
Fax: +55473724020
And our representative established within the European Community:
WEG Europe SA
Parc Silic Rhône Alpes
17, rue de Bruxelles
38070 St. Quentin Fallavier - France
Telephone: +33 474991135
Fax: +33 474991144
Herewith declare that the product: CFW-08 Frequency Inverter
Models:

CFW08...

Has been designed and manufactured in accordance with the following standards:
Safety: EN 50178 (1997) Electronic Equipment for Use in Power Installations
EN 60204-1 (1997) Safety of Machinery - Electrical Equipment of Machines Part 1: General Requirements
EMC: EN 61800-3 (1996) Adjustable Speed Electrical Power Drive Systems - Part 3: EMC Product Standard Including Specific Test Methods
Technical Construction File N ${ }^{3}$ WEG001-2002
Prepared by: WEG Indústrias S/A - Automação
Function: Manufacturer
Date: 20/Aug/2002
Competent Body:
Name: SGS United Kingdom Ltd.
Address: South Industrial Estate - Bowburn - Co. Durham United Kingdom - DHG 5AD
Certification N^{0} : DUR24182/CST/AR/02
and when installed in accordance with the installation recommendations contained in the product documentation, conforms to relevant provisions of:
Low Voltage Directive 73/23/EEC as amended by the Directive 93/68/EEC and
EMC Directive $89 / 336 / \mathrm{EEC}$ as amended by $92 / 31 / \mathrm{EEC}$ and $93 / 68 / \mathrm{EEC}$.

Date

Wilma Henning
WEG Europe SA
Director

Date

WEG Indústrias S / \mathcal{A} - Automação
Managing Director

4.1 PRE-POWER CHECKS

START-UP

This Chapter provides the following information:
\square how to check and prepare the inverter before power-up;
\square how to power-up and check for proper operation;
\square how to operate the inverter when it is installed according to the typical connections (refer to Section 3.2 - Electrical Installation).

The inverter shall be installed according to Chpater 3 - Installation and Connection. If the drive project is different from the typical suggested connections, follow the procedures below.

DANGER!

Alaways disconnect the AC input power before making any connections.

1) Check all connections

Check if the power, grounding and control connections are correct and well tightened.
2) Check the motor

Check all motor connections and verify if its voltage, current and frequency match the inverter specifications.
4) Uncouple the load from the motor

If the motor can not be uncoupled, make sure that the direction of rotation (FWD/REV) can not cause damage to the machine.

After the inverter has been checked, AC power can be applied:

1) Check the power supply

Measure the line voltage and check if it is within the specified range (rated voltage: + 10\% / - 15\%).

2) Power-up the $A C$ input

Close the input circuit breaker or disconnect switch.
3) Check if the power-up has been succesful

- Inverter with keypad (HMI-CFW08-P or HMI-CFW08-RS)

The keypad display will show:

The four LEDs of the keypad remains ON during this procedure. Inverter runs some self-diagnosis routines. If no problems are found, the display shows:

This means that the inverter is ready (rdy = ready) to be operated.

- Inverter with dummy panel (TCL-CFW08 or TCR-CFW08).

The LEDs ON (green) and ERROR (red) are ON.
Inverter runs some self-diagnosis routines. If no problems are found the LED ERROR (red) turns OFF. This means that the inverter is now ready to be operated.

4.3 START-UP

This Section describes start-up procedures when operating via the keypad (HMI). Two types of control will be considered:

V/F and Vetor Control

The V/F control is recommended in the following cases:
\square several motors driven by the same inverter;
\square rated current of the motor is lower than $1 / 3$ of rated inverter current \square for test purposes, inverter is start-up without load.
The V/F control can also be used in applications that do not require fast dynamic responses, accurate speed regulations or high starting torque (speed error will be a function of the motor slip); when you program parameter P138 - rated slip - you can obtain a speed accuracy of 1%. For the most applications, we recommend the vector control mode, that permits a higher speed control accuracy (typical 0.5\%), higher starting torque and a faster dynamic response.

DANGER!

Even after the AC power supply has been disconnected, high voltages may be still present. Wait at least 10 minutes after powering down to allow full discharge of the capacitors.

The sequence below is valid for the connection 1 (refer to Section 3.2.5). Inverter must be already installed and powered up according to Chapter 3 and Section 4.2.

4.3.1 Start-up
 Operation via Keypad
 (HMI)- Type of Control: Linear V/F(P202=0)

Connections according to Figure 3.4.

ACTION	HMI DISPLAY	DESCRIPTION
Power-up the inverter	$\square \square \square$	Inverter is ready to be operated
Press the key		Motor accelerates from 0 Hz to $3 \mathrm{~Hz}^{*}$ (min. frequency), in the forward (CW) direction of rotation ${ }^{(1)}{ }^{*} 90$ rpm for 4 pole motor.
Press the key and hold it depressed until 60 Hz is reached	ETEM	Motor accelerates up to $60 \mathrm{~Hz}^{*}{ }^{(2)}$ * 1800rpm for 4-pole motor
Press the (2) key	E B M I	Motor decelerates ${ }^{(3)}$ down to 0 rpm and then reverses the direction of rotation $\mathrm{CW} \Rightarrow \mathrm{CWW}$ accelerating back to 60 Hz
Press the		Motor decelerates down to 0 rpm
Press the \square key and hold it depressed	$\square \square, \square 17$	Motor accelerates up to JOG frequency given by P122. Ex: P122 $=5.00 \mathrm{~Hz}$. Reverse (CCW)

ACTION	DISPLAY HMI	DESCRIPTION
Release the 100 key	Motor decelerates down to 0 rpm	

0
 NOTE!

The last frequency reference (speed) vale set via the and keys is saved.

If you wish to change this value before inverter enabling, change parameter P121 (Keypad Reference).

NOTES:

(1) If the direction of rotation of the motor is not correct, switch off the inverter. Wait at least for 10 minutes to allow complete capacitor discharge and then swap any two wires at the motor output.
(2) If the acceleration current becomes too high, mainly at low frequencies, set the torque boost (IxR compensation) at P136. Increase/decrease the content of P136 gadually until you obtain an operation with constant current over the entire frequency range. For the case above, refer to Parameter Description in Chapter 6.
(3) If E01 fault occurs during deceleration, increase the deceleration time at P101 / P103.

4.3.2 Start-up

Operation Via Terminals -
Control Mode:
Linear V/F (P202=0) Connections are according to Figures 3.4 and 3.12.

ACTION	HMI DISPLAY	DESCRIPTION
See Figure 3.12 Switch S1 (FWD / REV)=open Switch S2 (Reset)=open Switch S3 (Start/Stop)=open Potentiometer R1 (Ref.)=totalzly CCW Power-up inverter		Inverter is ready to be operated.
Press the key This procedure is not necessary when inverters were delivered dummy panel, since it will be automatically in remote mode.		Led LOCAL switches OFF and led REMOTE switches ON. Control and Reference are are switched to REMOTE (via terminals). To maintain inverter permanently in REMOTE mode, set P220 $=1$. Note: If the inverter is switched off and afterwards switched on, it will now operate in local mode because $\mathrm{P} 220=2$ (factory setting). This setting means that the local/remote selection source is via keypad and the default mode (that is the mode when the inverter is switched on) is local. For further information see description of P220 in Chapter 6.
Close S3 - Start/Stop	$\square \square 1]$	Motor accelerates from 0 Hz to $3 \mathrm{~Hz}^{*}$ (min. frequency), CW direction ${ }^{(1)}$ * 90rpm for 4-pole motor The frequency reference is given by the potentiometer R1.
Turn potentiometer totally CW.		Motor accelerates up to the the maximum frequency (P134 $=66 \mathrm{~Hz})^{(2)}$
Clse S1-FWD / REV		Motor decelerates ${ }^{(3)}$ down to $0 \mathrm{rpm}(0 \mathrm{~Hz})$, reverses the direction of rotation (CW \Rightarrow CWW) accelerating back up to the maximum frequency ($\mathrm{P} 134=66 \mathrm{~Hz}$).
Open S3 - Start / Stop		Motor decelerates ${ }^{(3)}$ down to 0 rpm .

(1) If the direction of roation of the motor rotation is not correct, switch off the inverter. Wait 10 minutes to allow a complete capacitor discharge and the swap any two wires at the motor output.
(2) If the acceleration current becomes too high, mainly at low frequencies, set the torque boost (IxR compensation) at P136.
Increase/decrease the content of P136 gadually until you obtain an operation with constant current over the entire frequency range.
For the case above, refer to Parameter Description in Chapter 6.
(3) If E01 fault occurs during deceleration, increase the deceleration time at P101 / P103.

4.3.3 Start-up

Operation via Keypad -
Control Mode:
Vector (P202=2)

The sequence below is based on the following inverter and motor example: Inveter: CFW080040S2024ESZ
Motor: WEG-IP55
Power: $0.75 \mathrm{HP} / 0.55 \mathrm{~kW}$;
Frame size: 71; RPM: 1720; Number of Poles: IV;
Power factor $(\cos \varphi)$: 0.70;
Efficiency (η): 71\%;
Rated Current at 220V: 2.90A;
Frequency: 60 Hz .

NOTE!

The notes in Table below can be found on page 60.

ACTION	HMI DISPLAY	DESCRIPTION
Power-up inverter	$\square \square, \square$	Inverter is ready to be operated
Press PROCN. key. Press the key until P000 is reached. You can also use the key to reach the Paramater P000.		P000=access for changing parameters
Press the key to enter into the programming mode.	$\square \square \square$	Enter the programming mode
Use the keys \square and to set the passowrd value.		P000=5: permits parameter changing
Press the (PROG key to save the selected option and to exit the programming mode.		Exit the programming mode
Press the key or until P202 is reached.		This parameter defines the control type $0=\mathrm{V} / \mathrm{F}$ Linear 1=V/F Quadratic 2=Vector
Press the (PROG key to enter into the programming mode.	$\square \square \square$	Enter the programming mode
Use the \square and keys to select the control type		P202=2: Vector
Press the (PROG to save the selected option and to start the tuning routine after changing to Vector Control mode		Motor efficiency: $50 \text {... 99,9\% }$
Press the PROG) key and use the keys keys (and to set the correct rated motor efficiency (in this case 71\%)		Set motor efficiency: 71%

ACTION	HMI DISPLAY	DESCRIPTION
Press the key to save the selected option and to exit the programming mode	G B E	Exit the programming mode
Press the key to go to the next parameter	G M B I	Rated motor voltage range: $0 \text {... 600V }$
Press the \qquad key and use the keys and \square to set the correct rated motor vōltage	$\square \square 17115$	Set rated motor voltage: 220 V (the default value is maintained) ${ }^{(2)}$
Press the (PROE key to save the selected option and exit the programming mode	EGIET	Exit the programming mode
$\begin{aligned} & \text { Press the key to go to the next } \\ & \text { parameter } \end{aligned}$	G41	Rated motor current range: $0.3 \times \mathrm{I}_{\text {nom }} \ldots 1.3 \times \mathrm{I}_{\text {nom }}$
Press the \square Proc key and use the keys and \square o set the correct rated mōtor current (in this case 2.90A)	G G B E	Set rated motor current: 2.90A
Press the (PROG key to save the selected option and to exit the programming mode	G4im	Exit the programming mode
Press the to go to the next parameter	EGE	Rated motor RPM range: $0 \text {... } 9999 \text { rpm }$
Press the (PRoc) key and use the keys (\triangle and the to set the correct motor speed (in this case 1720rpm)		Programmed rated motor RPM: 1720 rpm
Press the (rocil key to save the selected option and exit the programming mode	E4B E	Exit the programming mode
Press the (PROG) key to go to the next parameter	$\square \square$	Rated motor frequency: $0 \ldots F_{\text {max }}$
Press the PROG and use the keys and to set the correct value for the motor frequency.	$\text { E } 91615$	Set rated motor frequency: 60 Hz (the default value is maintained) ${ }^{(2)}$
Press the \square key to save the selected option and exit the programming mode		Exit the programming mode

NOTE!

0 The last speed reference value set via key
 is saved.
\square If you wish to change this value before enabling of inverter, change the value of the Parameter P121 - Keypad Reference;
\square The self-tuning routine can be cancelled by pressing the key.

NOTES:

(1) If during the running of the Self-Tuning Routine the display shows E14, this means that the motor parameters were not acquired correctly by the inverter. The most common reason for this fault may be that the motor has not been coupled to the inverter output. However motors with very lower currents than the used inverter, or incorrect motor connection may also cause the fault E14. In this case, operate the inverter in V/F mode (P202=0). When the motor is not connected and the fault condition E14 is indicated, proceed as follows:
(Switch off the inverter. Wait at least 5 minutes to allow a complete discharge of the capacitors.
\square Connect the motor to the inverter output.
\square Switch on the inverter.
\square Set P000=5 and P408=1.
\square Follow from now on the start-up procedures described in Section 4.3.3.
(2) For each inverter type, the parameters P399...P407 are set automatically to the rated motor data, considering a standard WEG motor, IV poles, 60 Hz .
When different motors are used, you must set the parameters manually, according to the motor nameplate data.
(3) If the direction of rotation of the motor is not correct, switch off the inverter. Wait at least 5 minutes to allow a complete discharge of the capacitors and then swap any two wires at the motor output.
(4) If fault E01 occurs during deceleration, you must increase the deceleration time at P101/P103.

KEYPAD (HMI) OPERATION

This chapter describes the CFW-08 operation via standard keypad or Human-Machine Interface (HMI), providing the following information:

】 general keypad description (HM)I;
\square use of the keypad;
] parameter programming;
\square description of the status indicators.

5.1 KEYPAD (HMI) DESCRIPTION

The standard CFW-08 keypad has a LED display with 4 digits of 7 segments, 4 status LEDs and 8 keys. Figure 5.1 shows the front view of the keypad and indicates the position of the display and the status LEDs.

Figure 5.1-CFW-08 standard keypad

Functions of the LED Display:

The LED display shows the fault codes and drive status (see Quick Parameter Reference, Fault and Status), the parameter number and its value. For units of current, voltage or frequency, the LED display shows the unit in the right side digit $\left[\mathrm{U}=\right.$ Volts, $\mathrm{A}=$ Ampères, ${ }^{\circ}=$ Celsius Degree $\left.\left({ }^{\circ} \mathrm{C}\right)\right]$

Functions of the "Local" and "Remote" LEDs:
Inverter in Local Mode:
Green LED ON and red LED OFF.

Inverter in Remote Mode:
Green LED OFF and red LED ON.
Functions of the FWD/REV LEDs - Direction of Rotation
Refer to Figure 5.2

Figure 5.2 - Direction of rotation (FWD/REV) LEDs

Basic Functions of the Keys:

(I) Starts the inverter via acceleration ramp.

0 Stops (disables) the inverter via deceleration ramp.
Also resets inverter after a fault has occurred.
(ROG) Toggles the LED display between parameter number and its value (number/value).

Increases the frequency, the parameter number or the parameter value.
Decreases the frequency, the parameter number or the parameter value.
Reverses the direction of motor rotation between Forward/Reverse
Toggles between the LOCAL and REMOTE modes of operation .
106 Performs the JOG function when pressed. Any DI programmed for General Enable (if any) must be closed to enable the JOG function.

5.2 USE OF THE KEYPAD HMI

The keypad is used for programming and operating the CFW-08, allowing the following functions:
\square indication of the inverter status and operation variables;
\square fault indication and diagnostics;
■

5．2．1 Keypad
 Operation

All functions relating to the CFW－08 operation（Start／Stop，Direction of Rotation，JOG，Increment／Decrement of the Speed（Frequency）Reference， and selection of LOCAL／REMOTE mode）can be performed through the HMI selection．For factory default programming of the inverter，all keypad keys are enabled when the LOCAL Mode has been selected．These same functions can be performed through digital and analog inputs．Thus you must program the parameters related to these corresponding inputs．

NOTE！
The control keys 106 are only enabled if：
\square P229＝0 for LOCAL Mode operation
『 P230＝0 for REMOTE Mode operation
The key
 ロ P231＝2

Keypad keys operation description：
When enabled（P220＝ 2 or 3 ），selects the control input and the speed reference（speed）source，toggling between LOCAL and REMOTE Mode．

When pressed，starts the motor according to acceleration ramp up to the speed（frequency）reference．The function is similar to that performed through digital input START／STOP，when it is closed（enabled） and maintained enabled．

Stop disables the inverter via deceleration Ramp．The Function is similar to that performed through digital input START／STOP，when it is open （disabled）and maintained disabled．

When the JOG key is pressed，it accelerates the motor according to the acceleration ramp up to the JOG speed programmed in P122．
This key is only enabled when the inverter digital inputs，programmed to general enable（if any）are closed．

When enabled（refer to the note above），reverses the motor direction of rotation．

Motor speed（frequency）setting：these keys are enabled for speed setting only when：
■ the speed reference source is the keypad（P221＝ 0 for LOCAL Mode and／or P222 $=0$ for REMOTE Mode）；
园 the following parameter content is displayed：P002，P005 or P121．
Parameter P121 stores the speed reference set by these keys．
When pressed，it increases the speed（frequency）reference．
When pressed，it decreases the speed（frequency）reference．

Reference Backup

The last frequency reference set by the keys the is stored when inverter is stopped or the AC power is removed, provided $\mathrm{P} 120=1$ (reference backup active is the factory default). To change the frequency reference before starting the inverter, the value of the parameter P121, must be changed.

5.2.2 Inverter Status

Inverter is READY to be started.

Line voltage is too low for inverter operation (undervoltage condition).

Inverter is in a Fault condition. Fault code is flashing on the display. In our example we have the fault code E02 (refer to chaper Maintenance).

Inverter is applying a DC current on the motor (DC braking) according to the values programmed at P300, P301 and P302 (refer to Chapter 6).

Inverter is running self-tuning routine to identify motor parameters automatically. This operation is controlled by P408 (refer to Chapter 6).

NOTE!

The display also flashes in the following conditions, besides the fault conditions:
\square trying to change a parameter value when it is not allowed.
\square inverter in overload condition (refer to Chapter Maintenance).
5.2.3 Read-Only Variables

Parameters P002 to P099 are reserved for the display of read-only values. The factory default display when power is applied to the inverter is P002 (frequency proportional value in V/F control mode and motor speed in rpm in vector control mode). Parameter P205 defines the initial monitoring parameter, i.e., defines the read-only variable that will be displayed when the inverter is powered up. For further information refer to P205 description in Chapter 6.

5.2.4 Parameter Viewing and Programming

All CFW-08 settings are made through parameters. The parameter are shown on the display by the letter \mathbf{P} followed by a number:
Exmple (P101):

Each parameter is associated with a numerical value (parameter value), that corresponds to the selected option among the available ones for this parameter.

The parameter values define the inverter programming or the value of a variable (e.g.: current, frequency, voltage).For inverter programming you should change the parameter content(s).

To allow the reprogramming of any parameter value (except for P000 and P 121) it is required to set $\mathrm{P} 000=5$.
Otherwise you can only read the parameter values, but not reprogram them. For more details, see P000 description in Chapter 6.

ACTION	HMI DISPLAY	DESCRIPTION
Turn ON the inverter	$\square \square \square$	Inverter is ready to be started
	ETIE	
Use the keys F and reach P100	ETIM	Select the desired parameter
$\text { Press the } \text { key }$	$\square \square, \square$	Numerical value associated with the parameter ${ }^{(4)}$
Use the keys and (keys	$\square \square, \square 1$	Set the new desired value ${ }^{(1)(4)}$
Press the PROC key	ETB	(1) (2) (3)

NOTE!

(1) For parameters that can be changed with the motor running, the inverter will use the new value immediately after it has been set. For parameters that can be changed only with motor stopped, the inverter will use this new value only after the key (ROG) is pressed.
(2) By pressing the krog key after the reprogramming, the new programmed value will be stored automatically and will remain stored until a new value is programmed.
(3) If the last programmed value in the parameter is not functionally compatible with other parameter values already programmed, E24Programming Error - will be displayed.
Example of programming error:
Programming of two digital inputs (DI) with the same function. Refer to Table 5.1 for list of programming errors that can generate an E24 Programming Error.
(4) To allow the reprogramming of any parameter value (except for P 000 and P 121) it is required to set $\mathrm{P} 000=5$.
Otherwise you can only read the parameter values, but not reprogram them. For more details, see P000 description in Chapter 6.

```
P265=3 (JOG) and other(s) DI(s) f Start/Stop or forward run and reverse or FWD run and REV run
using Ramp #2
P266=3 (JOG) and other(s) DI(s) f Start/Stop or forward run and reverse or FWD run and REV run
using Ramp #2
Two or more parameters among P264, P265 and P266 equal to 1 (LOC/REM)
P265=13 and P266=13 (flying start disable)
P265=10 and P266=10 (reset)
P263=14 and P264\not=14 or P263\not=14 and P264=14 (3-wire - Start/Stop)
Two or more parameter among P264, P265 and P266 equal to 0 (FWD/REV)
P263=8 and P264\not=8 and P264\not=13
P263}=8\mathrm{ and P263}=13\mathrm{ and P264=8
P263=13 and P264 }=8\mathrm{ and P264 }=1
P263}=8\mathrm{ and P263}=13\mathrm{ and P264=13
P263=8 or 13 and P264=8 or 13 and P265=0 or P266=0
P263=8 or 13 and P264=8 or 13 and P231\not=2
P221=6 or P222=6 and P264\not=7 and P265 }=7\mathrm{ and P266 }=7\mathrm{ (multispeed)
P221\not=6 or P222\not=6 and P264=7 or P265=7 or 14 or P266=7
P265=14 and P221\not=6 and P222\not=6
P221=4 or P222=4 and P265 =5 and P266 =5 (EP)
P221\not=4 or P222\not=4 and P265=5 and P266=5
P295 incompatible to the inverter model (size and voltage).
P300}\not=0\mathrm{ and P310= 2 or 3 (DC braking and ride-through active)
P203=1 (PID special function) and P221 or P222=1, 4, 5, 6, 7 or 8
P265=6 and P266=6 (ramp #2)
P221=2 or 3 or 7 or 8 and standard inverter
P222=2 or 3 or 7 or 8 and standard inverter
P265=13 and P266=3 (flying start disable)
P221=4 or P222=4 (reference = P.E.) and P265*5 and 16 and P266 =5 and 16 (DI3 and D14 not programmed to P.E.).
P265=5 or 16 or P266=5 or 16 (DI3 or DI4 programmed to P.E.) and P221\not=4 and P222\not=4 (reference }=\mathrm{ P.E.).
P265=6 or P266=6 (DI3 or DI4 programmed to the 2nd ramp) and P263=13 or P264=13 (fwd/rev with 2 nd
ramp).
```

Table 5.1-Incompatibility of parameters - E24

DETAILED PARAMETERDESCRIPTION

6.1 SYMBOLS
6.2 INTRODUCTION
6.2.1 Control Modes
6.2.2 V/F Control

Please find below some symbols used in this chapter:
Alx = Analog input number x.
AO = Analog output.
DIx = Digital input number x.
$F^{*}=$ Frequency reference. This is the frequency value that indicates the desired motor speed at the inverter output.
$F_{e}=$ Input frequency of the acceleration and deceleration ramp.
$\mathrm{F}_{\text {max }}=$ Maximum output frequency, defined at P134.
$F_{\text {min }}=$ Minimum output frequency, defined at P133.
$F_{\mathrm{s}}=$ Output frequency - frequency applied to the motor.
$I_{\text {nom }}=$ Rated inverter output current (rms), in Ampères (A). This value is defined in P295.
$I_{\mathrm{s}}=$ Inverter output current.
$\mathbf{I}_{\mathrm{a}}=$ Active current at inverter output, i.e., it is the compoment of the total motor current proportional to active electric power absorbed by the motor.
RLX = Relay output number x.
$\mathbf{U}_{\mathbf{d}}=\mathrm{DC}$ link voltage in the DC link circuit.

This section describes the main concepts related to the CFW-08 frequency inverter.

As already informed in section 2.3, CFW-08 has in the same product a V/F control and a sensorless vector control (VVC: "voltage vector control"). The user must choose one of them. Please find below a description of each control mode.

This control mode is based on the constant V/F curve(P202=0 - linear V/ F curve). Its performance is limited at low frequencies as function of the voltage drop in the stator resistance, that causes a significant magnetic flow reduction in the motor air gap and consequently reducing the motor torque. This deficiency should be compensated by using manual and automatic boost torque (IxR compensations), that are set manually and depend on the user experience.
In most applications (for instance: centrifugal pumps and fans) the setting of these functions is enough to obtain the required performance. But there are applications that require a more sophisticated control. In these cases it's recommended the use of the sensorless vector control, that will be described in the section below.
In V/F control, the speed regulation, that can be obtained by setting properly slip compensation can be maintained within 1 to 2% of the rated speed. For instance, for a IV pole motor/60Hz, the minimum speed variation at no load condition and at rated load can be maintained between 18 and 36 rpm .

6.2.3 Vector Control (VVC)

6.2.4 Frequency Reference Sources

There is still a variation of the linear V/F control: the quadratic V/F control. This control mode is suitable for applications like centrifugal pumps and fans (loads with quadratic torque x speed characteristics), since it enables a motor loss reduction, resulting in an additional energy saving by using an inverter.
For more details about the V/F control mode, please refer to the description of the parameters P136, P137, P138, P142 and P145.

Inverter performance improvements can be achieved when the sensorless vector control is selected (P202=2).
The CFW-08 vector control is sensorless, i.e., it does not require a signal of the speed feedback through tachogenerator or encoder coupled on motor shaft.
To maintain the magnetic flow in the motor air gap constant, and consequently the motor torque, within the whole speed variation range (from zero up to the field weakening point), a sophisticated control algorithm is used that considers the mathematic model of the induction motor.
Thus one can maintain the mangetic flow in the motor air gap approximately constant at frequencies down to approximately 1 Hz .
In vector control mode one can obtain a speed regulations about 0.5\% (relating to the rated speed). Thus, for instance, for a IV pole motor/ 60 Hz one can obtain a speed variation in the range of 10rpm (!).
Other advantage of the vector control is its easy setting procedure.
The user needs only to enter in the parameters P399 and 407 the information about the used motor (nameplate data) and runs the self-tuning routine (by setting $\mathrm{P} 408=1$) and the inverter configures itself to the required application. So the inverter is ready to be operated in an optmized manner. For more information, refer to the description of the following parameters: P178 and P399 to P409.

The frequency reference (i.e., the desired output frequency, or alternatively, the motor speed) can be defined in several ways:
\square the keypad-digital reference that can be changed through the keypad (HMI), by using the keys
(A) and (see P221, P222 and P121);
\square analog input - the analog input Al1 (XC1:6) or the Al2 (XC1:8) can be used, or both (see P221, P222 and P234 to P240);
\square multispeed - up to 8 preset digital references (see P221, P222 and P124 to P131);
\square electronic potentiometer (EP) - another digital reference, its value is defined by using 2 digital inputs (DI3 and DI4) - see P221, P222, P265 and 266;
■ via serial.
Figure 6.1 shows through a diagram block the frequency reference definition to be used by the inverter.
The block diagram in Figure 6.2 shows the inverter control.

NOTE!
\square Al2 is only available in CFW-08 Plus version.
\square Dls ON when connected to 0 V (XC1:5).
\square When $\mathrm{F}^{*}<0$ one takes the module of F^{*} and reverses the direction of rotation (if this is possible - P231=2 and if the selected control is not forward run/reverse run.

Figure 6.1-Block diagram of the frequency reference

NOTE!

■ In V/F control mode (P202=0 or 1), Fe=F* (see Fig. 6.1) if P138=0 (slip compensation disabled). If $\mathrm{P} 138 \neq 0$, see Figure 6.9 for the relation between Fe and F^{*}.
\square In vector control mode (P202) always $\mathrm{Fe}=\mathrm{F}^{*}$ (see Figure 6.1).

Figure 6.2-Inverter block diagram

6.2.5 Commands

6.2.6 Local/Remote
 Operation Modes

The inverter has the following commands: PWM pulse enabling/disabling, definition of the direction of rotation and JOG.
As the reference, the inverter commands can de defined in several ways.
The command sources are the following:
Q via keypad-keys $(\mathbb{O}$ and
\square via control terminals (XC1) - digital inputs;
\square via serial interface.
The inverter enabling and disabling commands can be defined as follows:
\square via keypad and of the HMI;
■ via serial;
\# start/stop (terminals XC1 - DI(s) - see P263 ... P266);
\square general enable (terminals XC1 - DI(s) - see P263 ... P266);
■ forward run
It defines also the direction of rotation;
\square ON/OFF (3-wire controls) (terminals XC1 - Dls - see P263 e P264).
The definition of the direction of rotation can be defined by using:
\square the key of the keypad;
\square serial;

- digital input (DI) programmed for FWD/REV (see P264 ... P266);
\square digital inputs programmed as FWD / REV, that defines both inverter enabling or disabling and direction of rotation (see P263 e P264);
\square analog input - when the reference is via analog input and a negative offset is programmed (P 236 or $\mathrm{P} 240<0$), the reference may assume negative values, thus reversing the direction of the motor rotation.

User can define two different conditions relating to the frequency reference source and the inverter commands: these are the local and the remote operation modes.
Figure 6.3 shows the local and remote operation modes in a block diagram. With the factory setting in local mode the inverter can be controlled by using the keypad, while in remote mode all controls are via terminals (XC1).

Figure 6.3 - Block diagram of the local and remote operation mode

6.3 PARAMETER LISTING

In order to simplify the explanation, the parameters have been grouped by characteristics and functions:

Read-Only Parameters	Variables that can be viewed on the display, but can not be changed by the user.
Regulation Parameters	Programmable values used by the CFW-08 functions.
Configuration Parameters	They define the inverter characteristics, the functions to be executed, as well as the input/output functions of the control board.
Motor Parameters	Data about the applied motor: data indicated on the motor nameplate and those obtained during the running of the self-tuning routine.
Special Function Parameters	Here are included parameters related to special functions, like PID regulator.

6.3.1 Access and Read Only Parameters - P000 ... P099

where $T_{\text {nom }}$ is given in kgf.m, $P_{\text {nom }}$ is the rated motor power in wattsHP - (P404), and $n_{\text {nom }}$ is the rated motor speed in rpm - P402.

P014	$00 \ldots 41$	
Last Fault	$[-]$	
	-	

\square Indicates the code of the last occured fault.
圂 Section 7.1 shows a list of possible faults, their code numbers and possible causes.

Parameter	Range [Factory Setting] Unit	Description / Notes
P023 Software Version	$\begin{gathered} \mathrm{x} . \mathrm{yz} \\ {[-]} \end{gathered}$	Indicates the software version installed in the DSP memory located on the control board. 7 Parameter P040, P203, P520 to P528 are only available from the software version V3.50 on.
P040 Process Variable (PID)	0...P528 [-] 1	Indicates the value of the process variable used as PID feedback, in percent (\%). The PID function is only available from the software version V3.50 on. The indication unit can be changed through P528. See detailed description of the PID regulator in Section 6.3.5Special Function Parameters.

6.3.2 Regulation Parameters - P100 ... P199

P100	$0.1 \ldots . .999 \mathrm{~s}$
Acceleration	$[5.0 \mathrm{~s}]$
Time \#1	$0.1 \mathrm{~s}(<100) ;$
	$1 \mathrm{~s}(>99.9)$
P101	$0.1 \ldots 999 \mathrm{~s}$
Deceleration	$[\mathbf{1 0 . 0 \mathrm { s }]}$
Time \#1	$0.1 \mathrm{~s}(<100) ;$
	$1 \mathrm{~s}(>99.9)$
P102	$0.1 \ldots 999 \mathrm{a}$
Acceleration	$[\mathbf{5 . 0 \mathrm { s }]}$
Time \#2	$0.1 \mathrm{~s}(<100) ;$
	$1 \mathrm{~s}(>99.9)$
P103	$0.1 \ldots 999 \mathrm{~s}$
Deceleration	$[\mathbf{1 0 . 0 s}]$
Time \#2	$0.1 \mathrm{~s}(<100) ;$
	$1 \mathrm{~s}(>99.9)$
P104	$0 \ldots 2$
S Ramp	$[\mathbf{0}-$ Inactive $]$

T This set of parameters defines the time to accelerate linearly from zero up to the rated frequency and to decelerate linearly from the rated frequency down to zero.
The rated frequency is defined by parameter:

- P145 in V/F control (P202=0 ou 1);
- P403 in vector control (P202=2).

■ When factory setting is used, inverter always follows the time defined in P100 and P101.
7 Ramp \#2 is used, the the acceleration and deceleration times follow the values programmed at P102 and P103, use a digital input. See parameters P263 ... P265.
\square Depending on the load inertia, too short acceleration times can disable the inverter due to overcurrent (E00).
\square Depending on the load inertia, too short deceleration times can disable the inverter due to overvoltage (E01). For more details, refer to P151.

■ The ramp S reduces mechanical stress during the acceleration and deceleration of the load.

P104	Ramp S
0	Inactive
1	50%
2	100%

Figure 6.4 - S or linear ramp
T It is recommended to use the S ramp with digital frequency/speed references.

Parameter	Range [Factory Setting] Unit	Description / N	
P120 Digital Reference Backup	$\begin{gathered} 0 \ldots 2 \\ {[1-\text { ativo] }} \end{gathered}$	\square Defines if the inverter should save or not the last used digital reference. This backup function is only applicable to the keypad reference.	
		P120	Reference Backup
		0	Inactive
		1	Active
		2	Active, but always give by P121, independently of the sorce reference

\square If the digital reference backup is inactive ($\mathrm{P} 120=0$), the reference will be equal to the minimum frequency every time the inverter is enabled, according to P133.
\square When $\mathrm{P} 120=1$, inverter saves automatically the digital reference value, independent of the reference source, keypad, EP or serial).
$\square \mathrm{P} 120=2$, could be helpful when the reference is via EP and the user do not want to start at the minimum frequency nor at the last frequency. It is desirable to start at a fixed value, that should be set in P121. After finishing the acceleration ramp the reference is passed do EP again.

P121	$\mathrm{P} 133 \ldots \mathrm{P} 134$
Frequency	$[3.00 \mathrm{~Hz}]$
Reference by	$0.01 \mathrm{~Hz}(<100.0) ;$
key $\quad 0.1 \mathrm{~Hz}(>99.99)$	

\square Defines the keypad reference value that can be set by using the keys $\boldsymbol{\sim}$) and when the parameters P002 or P005 are being displayed.
\square The keys \boldsymbol{A} and are enabled if P221=0 (in local mode) or P222=0 (in remote mode). The value of P121 is maintained at the last set value, even when inverter is disabled or turned OFF, provided $\mathrm{P} 120=1$ or 2 (backup active).

P122

JOG Reference

P133...P134
[5.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$;
$0.1 \mathrm{~Hz}(>99.99)$
\boxtimes Defines the frequency reference (speed) for the JOG function. The JOG function can be activated in several ways:

The 106 key of the HMI-CFW08-P	$\mathrm{P} 229=0$ (local model) or $\mathrm{P} 230=0$ (remote mode)
The key of the HMI-CFW08-RS	$\mathrm{P} 229=2$ (local model) or
$\mathrm{P} 230=2$ (remote mode)	

\square To operate JOG function works, the inverter must be disabled by ramp (stopped motor). Thus if the control source is via terminal, there must be at least one digital input programmed as start/stop enabling (otherwise E24 will be displayed), which must be OFF to enable the JOG function via digital input.
\square The direction of rotation is defined by parameter P231.

| Range |
| :---: | :---: |
| [Factory Setting] |

Parameter
 P124 ${ }^{(1)}$

Multispeed Ref. 1

P125 ${ }^{(1)}$
Multispeed Ref. 2

P126 ${ }^{(1)}$
Multispeed Ref. 3

P127 ${ }^{(1)}$
Multispeed Ref. 4

P128 ${ }^{(1)}$

Multispeed Ref. 5

P129 ${ }^{(1)}$
Multispeed Ref. 6

P130 ${ }^{(1)}$

Multispeed Ref. 7

P131 ${ }^{(1)}$
Multispeed Ref. 8
[Factory Setting] Unit
P133...P134

[3.00 Hz]

$0.01 \mathrm{~Hz}(<100.0)$;
$0.1 \mathrm{~Hz}(>99.99)$
P133...P134 [10.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$; $0.1 \mathrm{~Hz}(>99.99)$

P133...P134
[20.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$;
$0.1 \mathrm{~Hz}(>99.99)$
P133...P134
[30.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$; $0.1 \mathrm{~Hz}(>99.99)$

P133...P134
[40.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$;
$0.1 \mathrm{~Hz}(>99.99)$
P133...P134
[50.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$;
$0.1 \mathrm{~Hz}(>99.99)$
P133...P134
[60.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$;
0.1 Hz (>99.99)

P133...P134
[66.00 Hz]
$0.01 \mathrm{~Hz}(<100.0)$;
$0.1 \mathrm{~Hz}(>99.99)$

Description/Notes

\square Multispeed is used when the selection of a number up to 8 preprogrammed speeds is desired.
\square It allows the control of the output speed by relating the values programmed by the parameters P124...P131, according to the logical combination of the digital inputs programmed for multispeed.
\square Activation of the multispeed function:

- ensure that the reference source is given by the multispeed function, i.e., set P221=6 in local mode or P222=6 in remote mode;
- program one or more digital inputs to para multispeed, according to table below:

DI	Programming
DI2	P264 $=7$
DI3	P265 $=7$
DI4	P266 $=7$

\square The frequency reference is defined by the status of the digital inputs programmed to multispeed as shown in table below:

8 speeds			
	4 speeds		
	2 speeds		
DI2	DI3	DI4	Freq. Reference
Open	Open	Open	P124
Open	Open	0V	P125
Open	0V	Open	P126
Open	0V	0V	P127
0V	Open	Open	P128
0V	Open	0V	P129
0V	0V	Open	P130
0V	0V	OV	P131

\square The multispeed function has some advantages for the stabibilty of the fixed preprogrammed references and the immunity against electrical noises (digital references and insulated digital inputs).

Figure 6.5 - Time diagram of the multispeed function

[^5]

Figure 6.6-V/F curve and details of the manual torque boost (IxR compensation)

P137
Automatic Torque
Boost
(Automatic IxR
Compensation)
This parameter is shown only in V/F control (P202=0 or 1)

0.00...1.00\% [0.00]
\square The automatic torque boost compensates for the voltage drop in the stator resistance as a function of the active motor current.
\square The criteria for setting P137 are the same as for the parameter P136.

[^6]

Figure 6.9 - Block diagram of the slip compensation function

[^7]

Figure 6.12 - Deceleration curve with DC Link voltage limitation (regulation)

ロ By this function an optimized deceleration time (minimum) is achieved for the driven load.
\square This function is useful in applications with medium inertia that require short deceleration times.
\square In case of overvoltage trip during the decelearation, you must reduce gradually the value of P151 or increase the time of the deceleration ramp (P101 and/or P103).
\square The motor will not stop if the line is permanently with overvoltage ($\mathrm{U}_{\mathrm{d}}>\mathrm{P} 151$). In this case, reduce the line voltage, or increase the value of P151.
\square If even with these settings the motor does not decelerate within the required time, you will have the following alternatives

- use the dynamic braking (for more details, see Item 8.20);
- if inverter is being operated in V/F control, increase P136;
- if inverter is being operated in vector control, increase P178.

NOTE!

When dynamic braking is used, set P151 to the maximum value.

P156

Motor Overload
Current
$0.2 \times \mathrm{PI}_{\text {nom }} \ldots .1 .3 \times \mathrm{PI}_{\text {nom }}$
$[1.2 \times P 401]$
$0.01 \mathrm{~A}(<10.0 \mathrm{~A})$;
0.1 A ($>9.99 \mathrm{~A}$)
\square This function is used to protect the motor against overload (Ixt function - E05).
\square The motor overload current is the current level above which the in verter will consider the motor operating under overload. The higher the difference between the motor current and the overload current, the sooner the Ixt function - E05-will act.

Parameter	Range [Factory Setting] Unit	Description / Notes
		 Figure 6.13-Ixt function - Overload detection \square Parameter P156 must be set from 10\% to 20\% higher than the rated motor current (P401). \square Always P401 is changed, P156 is adjusted automatically to 1.1xP401.
P169 Maximum Output Current	$\begin{gathered} 0.2 \times \mathrm{XI}_{\text {nom }} \ldots 2.0 \times \mathrm{PI} \mathrm{I}_{\text {nom }} \\ {[1.5 \times \mathrm{P} 295]} \\ 0.01 \mathrm{~A}(<10.0 \mathrm{~A}) ; \\ 0.1 \mathrm{~A}(>9.99 \mathrm{~A}) \end{gathered}$	\square Prevents motor stalling during an overload. If motor load increases its current will increase too. If the motor current attempts to exceed the value set at P169, the motor speed will be decreased by following the deceleration ramp until the current becomes lower than P169. As soon as the overload condition disappears, the motor speed is resumed. Figure 6.14 - Curves showing the actuation of the current limitation
P178 Rated Flux \square This parameter is shown only in vector control (P202=2)	$\begin{gathered} 50.0 . .150 .0 \% \\ {[100 \%]} \\ 0.1 \%(<100 \%) ; \\ 1 \%(>99.9 \%) \end{gathered}$	\square Defines the flux in the motor air gap, when in vector control. It is expressed as a percentage (\%) of the nominal flux. \square Generally it is not necessary to change P 178 of the default value (100\%). But in some specific cases, different values at P178 may be set.These conditions may be: - to increase the inverter torque capacity (P178>100\%). Examples: 1) to increase the motor starting torque and thus ensure faster motor starts; 2) to increase the inverter braking torque and thus allow faster stops, without using dynamic braking. - to reduce the inverter energy consumption (P178<100\%).

6.3.3 Configuration Parameters - P200 ... P398

Parameter	Range [factory Setting] Unit	Description / No	
P202 ${ }^{(1)}$ Type of Control	$\begin{gathered} 0 \ldots 2 \\ {[0-\mathrm{V} / \mathrm{F} \text { linear }]} \end{gathered}$	\square Defines the inverter control mode. Item 4.3 gives some guid relating to the selection of control type.	
		P202	Type of Control
		0	Linear V/F Control (scalar)
		1	Quadratic V/F Control (scalar)
		2	Vector Control

\square As shown in table above, there are $2 \mathrm{~V} / \mathrm{F}$ control modes:

- Linear V/F control: this control mode ensures a flux in the motor air gap approximately constant from around 3 Hz up to the field weakening (defined by the parameters P142 and P145). Thus in this speed range, an approximately constant torque capacity is obtained. This control mode is recommended for belt conveyors, extruding machines, etc.
- Quadratic V/F control: in this control mode the flux in the motor air gap is proportional to the output frequency up to the field weakening point (defined at P142 and P145). Thus the torque capacity is a function of the quadratic speed. The main advantage of this type of control is the energy saving capability with variable torque loads, due to the reduction of the motor losses (mainly due to motor iron losses and magnetic losses).

Main application fields for this type of control are: centrifugal pumps, fans, multimotor drivings.

Figure 6.15 -V/F control modes (scalar)

Parameter	Range [factory Setting] Unit	Description / Notes	
		\square The vector control allows a better performance regarding to torque and speed control. The CFW-08 vector control operates without motor speed sensor (sensorless). It must be applied when following performances are required: - better dynamics (faster accelerations and stoppings); - when a more accurate speed control is required; - when high torques at low speeds are required ($\leq 5 \mathrm{~Hz}$). Examples: in positioning, such as load moving, packing machines, pumps, dosing machines, etc. The vector control can not be used in multimotor applications. The performance of the vector control with a switching frequency of 10 kHz is not so good as when a switching frequency of 5 kHz or 2.5 kHz is used. It is not possible to use a vector control with a switching frequency of 15 kHz . \square For more details about the vector control, refer to Item 6.2.3.	
$\text { P203 }{ }^{(1)}$ Special Function Selection	$\begin{gathered} 0 \ldots 1 \\ {[0-\text { None }]} \end{gathered}$	\square Selects or not the special function of the PID regulator.	
		P203	3 Special function
		0	None
		1	PID regulator
		\square See detailed description of PID regualator parameters (P520...P528) in Section 6.3.5. \square When P203 is changed to 1, P265 is changed automatically to 15 (DI3 = manual/automatic).	
$\overline{\text { P204 }}{ }^{(1)}$ Load Factory setting	$\begin{aligned} & 0 \ldots 5 \\ & {[0]} \end{aligned}$	\square Programs all parameters to the standard factory default, when P204=5. \square The parameters P142 (max. output voltage), P145 (field weakening frequency), P295 (rated current), P308 (inverter address) and P399 to P407 (motor parameters) are not changed when the factory default parameters are loaded through P204=5.	
$\overline{\text { P205 }}{ }^{(1)}$ Display Default Selection	$\begin{gathered} 0 \ldots 6 \\ {[2-\mathrm{P} 002]} \end{gathered}$	\square Selects which of the parameters listed below will be shown on the display as a default after the inverter has been powered up.	
		P205	Read Parameter
		0 P	P005 [Output Frequency (Motor)]
		P	P003 [Output Current (Motor)]
		2 P	P002 (Value Proportional to Frequency)
		3 P	P007 [Output Voltage (Motor)]
		4,5 N	Not used
		6 P	P040 (PID Process Variable)
P206 Auto-Reset Time	$\begin{gathered} 0 \ldots 255 \mathrm{~s} \\ {[0]} \\ 1 \mathrm{~s} \end{gathered}$	\square In the event of a fault trip, except for E14, E24 and E41, the inverter can initiate an automatic reset after the time given by P206 is elapsed. If P206 ≤ 2 Auto-Reset does not occur. If after Auto-Reset the same fault is repeated three times consecutively, the Auto-Reset function will be disabled. A fault is considered consecutive if it happens again within 30 seconds after the Auto-Reset. Thus if a fault occurrs four times consecutively, this fault remains indicated permanently (and inverter disabled).	

82

Parameter	Range [Factory Setting] Unit	Description / Notes		
P208 Reference Scale Factor	$\begin{gathered} 0.00 \ldots 99.9 \\ {[1.00]} \\ 0.01(<10.0) \\ 0.1(>9.99) \end{gathered}$	\square It allows that the read-only parameter P002 indicates the motor speed in value, for instance, rpm. \square The indication of P002 is equal to the output frequency value (P005) multiplied by the value of P208, i.e., P002 = P208 x P005. If desired, the conversion from Hz to rpm is made as a function of the pole number:		
		Motor Pole Number		r P208 to P002 indicate the speed in rpm
		II poles		60
		IV poles		30
		VI poles		20
		Always when programmed to vector mode $(\mathrm{P} 202=2)$, the parameter P208 is set according to the value of P402 (motor speed) to indicate the speed in rpm, in P002.		
P215 ${ }^{(1)}$ Copy Function \square This parameter is only available via HMI-CFW08-RS keypad	$\begin{gathered} 0 . .2 \\ {[0-\text { No function }]} \end{gathered}$	\square The keypad Copy function is used to transfer the content of the parameters from one inverter to another.		
		P215	Action	Notes
		0	Off	-
		1	Copy (inverter \rightarrow keypad)	Transfers the current parameter values of the inverter to non volatile memory (EEPROM) of the HMI-CFW08-RS keypad. The current inverter parameters are not changed.
		2	Paste (keypad \rightarrow inverter)	Transfers the content of the non volatile memory of the keypad (EEPROM) to the current inverter parameters.

\square Procedure is as follows:

1. Connect the keypad (HMI-CFW08-RS) to the inverter from which the parameters will be copied (Inverter A - source inverter).
2. Set $\mathrm{P} 215=1$ (copy) to transfer the parameter values from the inverter A to the keypad. Press Rey. During running of the

Copy Function, display will show

P215 resets automatically to 0 (Off) after transfer has been completed.
3. Disconnect the keypad from the inverter (A).
4. Concect the same keypad to the inverter to which the parameters will be transferred (Inverter B - target inverter).
5. Set $\mathrm{P} 215=2$ (paste) to transfer the content of the of the keypad (EEPROM has the inverter A parameters) to inverter B. Press the key. While the keypad is running the paste function, the display shows $\square \square$, an abbreviation for paste.

When P215 returns to 0, the parameter transfer has been concluded. Now inveters A and B will have the same parameter values.

Figure 6.16-Copying the parameters from the inverter A to the inverter B, by using the Copy Function and the HMI-CFW08-RS keypad
\square While the keypad (HMI) is running the Copy Function (read or write procedures), you can not operate it.

P219 ${ }^{(1)}$

Switching
Frequency
Reduction
Point
$0.00 \ldots 25.00 \mathrm{~Hz}$
[6.00 Hz] 0.01 Hz

NOTE!

The copy function is only available when the inverters are of the same model (voltage and current) and when compatible software versions are installed. The sofware version is considered compatible when the digits x and $y(V x . y z)$ are equal. If they are different, E10 will be displayed and the parameters will not be loaded to the destination inverter.
\square Defines the point where the switching frequency is modified automatically to 2.5 kHz .
\square This improves considerably the measurement of the output current at low frequencies, and consequently improves the inverter performance, mainly when in vector control mode (P202=2).
It is recommended to set P219 according to the switching frequency as shown below:

P297 $\left(\mathrm{f}_{\text {sw }}\right)$	Recommended P219
$4(5 \mathrm{kHz})$	6.00 Hz
$6(10 \mathrm{kHz})$	12.00 Hz
$7(15 \mathrm{kHz})$	18.00 Hz

\square In application where it is not possible to operate the inverter at 2.5 kHz (for instance, due to acoustic noise), set P219=0.00.

[^8]| Parameter | Range [Factory Setting] Unit | Description / Notes | | |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \mathbf{P 2 2 0}^{(1)} \\ & \text { Local/Remote } \\ & \text { Source Selection } \end{aligned}$ | $\begin{gathered} 0 . .6 \\ {[2-K e y} \\ \text { HMI-CFW08-P] } \end{gathered}$ | 0 Defines the source of the Local/Remote selection. | | |
| | | P220 | Local/Remote Selection | Default Mode (*) |
| | | Always Local mode | | - |
| | | Always Remote mode | | - |
| | | Key of the keypad (HMI-CFW08-P or HMI-CFW08-RP) | | Local |
| | | Key of the keypad (HMI-CFW08-P or HMI-CFW08-RP) | | Remote |
| | | DI2...DI4 | | - |
| | | 5 Key | Key of the keypad (HMI-CFW08-RS) or serial interface | Local |
| | | $\begin{array}{l\|l} 6 & \begin{array}{l} \text { Key } \\ \text { or serial } \end{array} \end{array}$ | Key of the keypad (HMI-CFW08-RS) or serial interface | Remote |
| | | Note: (*) When inverter is powered up (initialization).
 In the factory default setting, the inverter is started in local mode and the key local/remote moae.
 The inverters with dummy panel (without HMI-CFW08-P keypad) are factory supplied with $\mathrm{P} 220=3$.
 For more details, refer to item 6.2.6. | | |
| $\overline{\mathbf{P 2 2 1}^{(1)}}$
 Local Reference Selection | $\begin{gathered} 0 \ldots 8 \\ {[\mathbf{0}-\text { Teclas }]} \end{gathered}$ | \square Defines the frequency reference selection in the Local and Remote mode. | | |
| | | P221/P222 | Reference Source | |
| $\text { P222 }{ }^{(1)}$ | 0... 8 | 0 | Keys and of the HMIs (P121) | |
| Remote Reference | [1-Al1] | 1 | Analog input Al1' (P234, P235 e P236) | |
| Selection |] | 2 or 3 | Analog input Al2' (P238, P239 e P240) | |
| | | 4 | Electronic potentiometer (EP) | |
| | | 5 | Serial | |
| | | 6 | Multispeed (P124...P131) | |
| | | 7 | Sum of the Analog Inputs (Al1'+Al2') ≥ 0 (negative values are zeroed). | |
| | | 8 | Sum of the Analog Inputs (Al1'+Al2') | |
| | | \square The description Al1' as apposed to Al1 refers to the analog signal after scaling and/or gain calculations have been applied to it. For factory default setting, the local reference is via the and keys of the keypad and the remote reference is via analog input Al1. The reference value set by the and keys is contained in parameter P121. For details of the Electronic Potentiometer (EP) operation, refer to Figure 6.19.
 When option 4 (EP) is selected, set P265 and P266 to 5. When option 6 (multispeed) is selected, set P264 and/or P265 and/or P266 to 7.
 ■ For more details, refer to items 6.2.4 and 6.2.6. | | |
| | | | | |

Parameter	Range [Factory Setting] Unit	Description / Notes	
$\begin{aligned} & \hline \text { P229 }^{(1)} \\ & \text { Local Command } \\ & \text { Selection } \end{aligned}$	$\begin{gathered} 0 \ldots 2 \\ {[0-\text { Keys }]} \end{gathered}$	\square Define the control sources for the inverter enabling disabling FWD/REV and JOG.	
		P229/P230	Control source
$\text { P230 }{ }^{(1)}$ Remote Command Selection	$\begin{gathered} 0 \ldots 2 \\ {[1-\text { Terminals }]} \end{gathered}$	0 HM	HMI-CFW08-P or HMI-CFW08-RP Keypad
		1 Te	Terminals (XC1)
		2 HM	HMI-CFW08-RS keypad or serial interface
		The direction of rotation is the only operation control that depends on other parameter for operation - P231. \square For more details, refer to Items 6.2.4, 6.2.5 and 6.2.6.	
$\begin{aligned} & \hline \text { P231 }^{(1)} \\ & \text { Forward/Reverse - } \\ & \text { Local/Remote Modes } \end{aligned}$	$0 . . .2$ [2 - Commands]	D Defines the direction of rotation.	
		P231	Direction of rotation
		0	Always forward
		1	Always reverse
		2	Commands as defined in P229 and P230
$\overline{\text { P234 }}$ Analog Input Al1 Gain	$\begin{gathered} 0.00 \ldots 9.99 \\ {[1.00]} \\ 0.01 \end{gathered}$	The analog inputs AI1 and AI2 define the inverter frequency reference as shown in the curve below.	

Figure 6.17 - Determination of the frequency reference from the analog inputs Al1 and Al2
\square Note that there is always a dead zone at the starting of the curve where the frequency reference remains at the value of the minimum frequency (P 133), even when the input signal is changed. This dead zone is only suppressed when $\mathrm{P} 133=0.00$.

	Range [Factory Setting] Unit

Description / Notes

\square The internal value Alx' that defines the frequency reference to be used by the inverter, is given as percent of the full scale reading and is obtained by using on of the following equations (see P235 and P239):

P235/P239	Signal	Equation
0	$0 \ldots 10 \mathrm{~V}$	Alx' $^{\prime}=\left(\frac{\text { Alx }}{10}+\frac{\text { OFFSET }}{100}\right) \cdot$ GAIN
1	$0 \ldots 20 \mathrm{~mA}$	Alx' $^{\prime}=\left(\frac{\text { Alx }}{20}+\frac{\text { OFFSET }}{100}\right) \cdot$ GAIN
2	$4 \ldots 20 \mathrm{~mA}$	Alx' $^{\prime}=\left(\frac{\text { Alx-4 }}{16}+\frac{\text { OFFSET }}{100}\right)$. GAIN

where:

- $\mathrm{x}=1$, 2;
- Alx is given in V or mA, according to the used signal (see parameters P235 and P239);
- GAIN is defined by the parameters P234 and P238 for Al1 and Al 2 respectively;
- OFFSET is defined by the parameters P236 and P240 for A11 and Al 2 respectively.
This is shown in the block diagram below:

Figure 6.18 - Block diagram of the analog inputs Al1 and Al2
V Example: a $0 \ldots 10 \mathrm{~V}$ signal is used $(\mathrm{P} 235=0), \mathrm{Al} 1=5 \mathrm{~V}, \mathrm{P} 234=1.00$ and P236=-70\%. Thus:

$$
\mathrm{Al} 1^{\prime}=\left[\frac{5}{10}+\frac{(-70)}{100}\right] \cdot 1=-0.2=-20 \%
$$

The motor will run in reverse direction of rotation as defined by the commands (negative value) - if this is possible (P231=2), with a module reference equal to 0.2 or 20% of the maximum output frequency (P134). I.e., if $\mathrm{P} 134=66.00 \mathrm{~Hz}$, then the frequency reference is equal to 13.2 Hz .

P235 ${ }^{(1)}$

Analog Input Al1
Signal
0... 1
[0 -
0...10V/0...20mA]
\square Defines the signal type of the analog input, as shown in table below:

P235/P239	Signal type
0	$0 \ldots 10 \mathrm{~V}$ ou $0 \ldots 20 \mathrm{~mA}$
1	$4 \ldots 20 \mathrm{~mA}$

When current signals are used, change the switch position $\mathrm{S} 1: 1$ and/or S1:2 to ON.

[^9]| Parameter | Range [factory Setting] Unit | Description / Notes | |
| :---: | :---: | :---: | :---: |
| P236
 Analog Input Al1 Offset | $\begin{gathered} \hline-120 \ldots . .120 \% \\ {[0.0]} \\ 0.1(<100) ; \\ 1(>99.9) \end{gathered}$ | ■ See P234. | |
| P238
 Analog Input AI2 Gain . This parameter is only available in the CFW-08 Plus version | $\begin{gathered} 0.00 \ldots 9.99 \\ {[1.00]} \\ 0.01 \end{gathered}$ | ® See P234. | |
| $\text { P239 }{ }^{(1)}$
 Analog Input AI2 Signal
 - This parameter is only available in the CFW-08 Plus version | | , See P235. | |
| P240
 Analog Input Al2 Offset
 [T This parameter is only available in the CFW-08 Plus version | $\begin{gathered} -120 \ldots . .120 \% \\ {[0.0]} \\ 0.1(<100) ; \\ 1(>99.9) \end{gathered}$ | 园 See P234. | |
| P248
 Analog Inputs Filter Time Constant | $\begin{gathered} 0 \ldots 200 \mathrm{~ms} \\ {[200 \mathrm{~ms}]} \\ 1 \mathrm{~ms} \end{gathered}$ | \square It configures the time constant of the analog inputs filter between 0 (without filtering) and 200ms.
 \square Thus the analog input will have a response time equal to three time constants. For instance, if the time constant is 200 ms , and a step is applied to the analog input, the response will be stabilized after 600 ms . | |
| P251 | 0... 9 | 0 P251 defines the variable to be indicated at the analog ouput. | |
| Analog Output AO | [0-f ${ }_{\text {s }}$] | P251 | AO Function |
| Function | | 0 | Output frequency (Fs) - P005 |
| | | 1 | Frequency reference or input frequency (Fe) |
| P252 | 0.00...9.99 | 2 | Output current - P003 |
| Analog Output AO | [1.00] | 3, 5 and 8 | No function |
| Gain | 0.01 | 4 | Torque - P009 |
| | | 6 | Process variable - P040 |
| - These | | 7 | Active current |
| parameters are | | 9 | PID Setpoint |
| the CFW-08 Plus version | | Q NOTE!
 -Option 4 is only available in the vector control mode.
 -Options 6 and 9 are only available from Software Version V3.50 on. For factory Setting, $\mathrm{AO}=10 \mathrm{~V}$ when the output frequency is equal to maximum frequency (defined by P134), i.e., equal to 66 Hz .
 Indication scale at the analog outputs (full scale $=10 \mathrm{~V}$): | |

[^10]| Parameter | Range [Factory Setting] Unit | Description / Notes | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Variable | | | scale | |
| | | Frequency (P251=0 or 1) | | | 134 | |
| | | Current (P251=2 or 7) | | | x ${ }_{\text {nom }}$ | |
| | | Torque (P251=4) | | | 0\% | |
| | | Process variable - PID | 251=6) | | 528 | |
| | | Setpoint PID (P251=9) | | | 528 | |
| P263 ${ }^{(1)}$
 Digital Input DI1 Function | $\begin{gathered} 0 \ldots .14 \\ {[0-\text { Not used }} \\ \text { or General Enabling] } \end{gathered}$ | Check possible options on table below and details about each function operation on Figure 6.19. | | | | |
| | | Function DI Parameter | $\begin{array}{\|c\|} \hline \text { DI1 } \\ \text { (P263) } \end{array}$ | $\begin{gathered} \text { DI2 } \\ \text { (P264) } \end{gathered}$ | $\begin{gathered} \text { DI3 } \\ \text { (P265) } \end{gathered}$ | $\begin{gathered} \text { DI4 } \\ \text { (P266) } \end{gathered}$ |
| P264 ${ }^{(1)}$
 Digital Input DI2 Function | $\begin{gathered} 0 \ldots . .14 \\ {[0-\text { FWD/REV] }} \end{gathered}$ | General Enable | $\begin{array}{\|l\|} \hline 1 . . .7 \text { and } \\ 10 . . .12 \end{array}$ | - | 2 | 2 |
| | | Start/Stop | 9 | - | 9 | 9 |
| | | No Function or Start/Stop | 0 | - | - | - |
| P265 ${ }^{(1)}$
 Digital Input DI3 Function | $\begin{gathered} 0 \ldots .15 \\ {[10-\text { Reset }]} \end{gathered}$ | No Function or Start/Stop | - | - | 8 | 8 |
| | | Forward Run | 8 | ${ }^{-}$ | - | - |
| | | Reverse Run | - | 8 | - | - |
| | | FWD with Ramp \#2 | 13 | - | - | - |
| P266 ${ }^{(1)}$
 Digital Input DI4 Function | 0... 15
 [8 - Not used [Start/Stop] | REV with Ramp \#2 | - | 13 | - | - |
| | | Start (3-wire) | 14 | - | - | - |
| | | Stop (3-wire) | - | 14 | - | - |
| | | Multispeed | - | 7 | 7 | 7 |
| | | Multispeed with ramp \#2 | - | - | 14 | - |
| | | Increase EP | - | - | 5 | - |
| | | Decrease EP | - | - | - | 5 |
| | | FWD/REV | - | 0 | 0 | 0 |
| | | Local/Remote | - | 1 | 1 | 1 |
| | | JOG | - | - | 3 | 3 |
| | | No external fault | - | - | 4 | 4 |
| | | Ramp \#2 | - | - | 6 | 6 |
| | | Reset | - | - | 10 | 10 |
| | | Disable Flying Start | - | - | 13 | 13 |
| | | Manual/Automatic (PID) | - | - | 15 | - |
| | | Not used | - | $\begin{array}{\|c\|} \hline 2 . . .6 \text { and } \\ 9 \ldots . .12 \end{array}$ | $\begin{array}{\|c} \hline 11 \text { and } \\ 12 \end{array}$ | $\begin{gathered} 11,12, \\ 14 \text { and } 15 \end{gathered}$ |
| | | Increase EP with Ramp \#2 | - | - | 16 | - |
| | | Decrease EP with Ramp \#2 | - | - | - | 16 |

T Functions activated with OV at digital input.

	Range [Factory Setting] Unit

Description / Notes
NOTES!

1) Local/Remote $=$ open/ 0 V at the digital input respectively.
2) P263=0 (not used or general enable) operates as follows:

- if the comand source are the terminals, i.e., if P229=1 for the local mode or P230=1 for the remote mode, the DI1 operates as general enable;
- otherwise, no function is assigned to the input DI1.

3) The programming of P265 or P266=8 (not used or start/stop) operates in similar way, i.e.:

- if inverter is running in local mode and P229=1, the digital input DI3/DI4 operates as start/stop;
- if inverter is running in remote mode and $\mathrm{P} 230=1$, the digital input DI3/DI4 operates as start/stop;
- otherwise no function is associated to the input DI3/DI4.

4) The selection of $P 265=P 266=5$ (EP) requires the programming of P221 and/or P222=4.
5) The selection of P264 and/or P265 and/or P266 $=7$ (multispeed) requires the programming of P221 and/or P222=6.
6) If different acceleration and deceleration times are desired for a given operation condition (for instance for a set of frequencies or for a direction of rotation), check if it possible to use the multispeed function with ramp \#2 and FWD/REV with ramp \#2.
7) See explanation about Flying Start Disable at P310 and P311.
8) The option manual/automatic is explained in item 6.3.5Special Function Parameters (PID).

3-WIRE START/STOP

FOWARD RUN / REVERSE RUN

Figure 6.19-Time diagrams of digital input functions

DETAILED PARAMETER DESCRIPTION

ELECTRONIC POTENTIOMETER (EP)

RAMP \#2

Figure 6.19- Time diagrams of digital input functions (cont.)

Figure 6.19-Time diagrams of the digital input functions (cont.)

Figure 6.20 - Details about the operation of the digital relay output fucntions

[^11]

[^12]| Parameter | Range [Factory Setting] Unit | Description / Notes | |
| :---: | :---: | :---: | :---: |
| P297 ${ }^{(1)}$ | 4... 7 | \square Defines the switching frea | ency of the IGB |
| Switching Frequency | [$4-5 \mathrm{kHz}$] | P297 | $\begin{gathered} \text { Switching } \\ \text { Frequency }\left(\mathrm{f}_{\mathrm{sw}}\right) \end{gathered}$ |
| | | 4 | 5 kHz |
| | | 5 | 2.5 kHz |
| | | 6 | 10 kHz |
| | | 7 | 15 kHz |

\square The switching frequency is a comprimise between the motor acoustic noise level and the inverters IGBTs losses. Higher switching frequencies cause lower motor acoustic noise level, but increase the IGBTs losses, increasing the drive components temperature and thus reducing their useful life.
\square The predominant frequency on the motor is twice the switching frequency setat P297.
■ Thus, P297=4 (5kHz) results in an audible motor noise corresponding to 10 kHz . This is due to the used PWM technique .
\square The reduction of the switching frequency also contributes to the reduction of instability and ressonance that may occur in certain application conditions, as well as reduces the emission of electromagnetic energy by the inveter.
\square The reduction of the switching frequencies also reduces the leakage currents to ground, which may avoid the nuisance activation of the ground fault protection (E00).
\square The option $15 \mathrm{kHz}(\mathrm{P} 297=7)$ is not available in vector control mode. U Use currents according to table below:

Inverter Model	$\begin{gathered} 2,5 \mathrm{kHz} \\ (\mathrm{P} 297=5) \end{gathered}$	$\begin{gathered} 5 \mathrm{kHz} \\ (\mathrm{P} 297=4) \end{gathered}$	$\begin{gathered} 10 \mathrm{kHz} \\ (\mathrm{P} 297=6) \end{gathered}$	$\begin{gathered} 15 \mathrm{kHz} \\ (\mathrm{P} 297=7) \end{gathered}$
CFW080016S2024...	1.6A	1.6A	1.6A	1.6A
CFW080016B2024...	1.6A	1.6A	1.6A	1.6A
CFW080026S2024...	2.6A	2.6A	2.6A	2.1 A
CFW080026B2024...	2.6A	2.6A	2.6A	2.6A
CFW080040S2024...	4.0A	4.0A	4.0A	3.4A
CFW080040B2024...	4.0A	4.0A	4.0A	4.0A
CFW080070T2024...	7.0A	7.0A	7.0A	6.3A
CFW080073B2024...	7.3A	7.3A	7.3A	7.3A
CFW080100B2024...	10A	10A	10A	10A
CFW080160T2024...	16A	16A	14A	12A
CFW080010T3848...	1.0A	1.0A	1.0A	1.0A
CFW080016T3848...	1.6A	1.6A	1.6A	1.6A
CFW080026T3848...	2.6A	2.6A	2.6A	2.3A
CFW080027T3848...	2.7A	2.7A	2.7A	2.7A
CFW080040T3848...	4.0A	4.0A	3.6A	2.8A
CFW080043T3848...	4.3A	4.3A	3.9A	3.0A
CFW080065T3848...	6.5A	6.5A	6.5A	6.3A
CFW080100T3848...	10A	10A	8.4A	6.4A
CFW080130T3848...	13A	13A	11A	9A
CFW080160T3848...	16A	16A	12A	10A

[^13]

Figure 6.21-DC braking after ramp disabling

Figure 6.22 - $A D C$ braking after general disabling
$\boxed{\square}$ Before DC braking starts, there is a "Dead Time" (motor runs freely) required for the motor demagnetization. This time is function of the motor speed at which the DC braking occurs.
D During the DC braking the LED display flashes

\square If the inverter is enabled during the braking process, this process will be aborted and motor operates normally.
\square DC braking can continue its braking process even after the motor has stopped. Pay special attention to the dimensioning of the motor thermal protection for cyclic braking of short times.
\square In applications where the motor current is lower than the rated inverter current, and where the braking torque is not enough for the braking condition, please contact WEG to optimize the settings.

Parameter	Range [Factory Setting] Unit	Description / Notes		
P310 ${ }^{(1)}$	0... 3	\square The parameter P310 selects the active function(s):		
Flying Start and	[0 - Inativas]	P310	Flying Start	Ride-Through
Ride-Through	-	0	Inactive	Inactive
	0.1 10.0s	1	Active	Inactive
Voltage Ramp	[5.0s]	2	Active	Active
		3	Inactive	Active

■ Parameter P311 sets the time required for the motor restart, both for flying start function and the ride-through function. In other words, it defines the time to set the output voltage starting from 0 V and up to reaching the rated voltage.
包 Operation of the flying start function:

- It allows the motor to start when it is running. This functions acts only when the inverter is enabled. During the start, the inverter will impose the speed reference, creating a voltage ramp with time defined at P311.
- The motor can be started in conventional form, even when the flying start has been selected (P310=1 or 2), adjusting one of the digital inputs (D13 or D14) to 13 (flying start disable) and driving it $(0 \mathrm{~V})$ during the motor start.
\square Ride-Through operation:
- Permits the inverter recovery, without disabling by E02 (undervoltage), when a momentary voltage drop in the line occurs. The inverter will be disabled only by E02, if the voltage drop is longer than 2.0s.
- When the ride-through function is enabled (P310=2 or 3) and if a voltage drop in the line occurs, so the link circuit voltage becomes lower than the permitted undervoltage level, the output pulses will be disabled (motor runs freely) and the inverter waits up to 2 s for the line re-establishment. If the line returns to is normal status within this time, the inverter will enable again the PWM pulses, imposing the frequency reference instantaneously and providing a voltage ramp with time defined at P311.
- There is a dead time before this voltage ramp is started, required for the motor demagnetization. This time is proportional to the output frequency (motor speed).

Figure 6.24 - Ride-Through actuation

[^14]| Parameter | Range [Factory Setting] Unit | Description / Notes | | |
| :---: | :---: | :---: | :---: | :---: |
| P312 ${ }^{(1)}$
 Serial Interface | $\begin{gathered} 0 \ldots 9 \\ {[0-\mathrm{WEG} \text { Protocol] }} \\ 1 \end{gathered}$ | It sets the type of the protocol for the serial communication. The serial interface can be configued for two distinct protocols: WEG and Modbus-RTU.
 The WEG protocol is described in Item 8.21 and is selected by setting P312=0.
 凹 The Modbus-RTU protocol, described in item 8.22 has nine predefined formats, as shown in table below: | | |
| | | P312 | Rate (bps) | Parity |
| | | 1 | 9600 | - |
| | | 2 | 9600 | Odd |
| | | 3 | 9600 | Even |
| | | 4 | 19200 | - |
| | | 5 | 19200 | Odd |
| | | 6 | 19200 | Even |
| | | 7 | 38400 | - |
| | | 8 | 38400 | Odd |
| | | 9 | 38400 | Even |
| P313
 Serial Interface Watchdog Action | $\begin{gathered} 0 \ldots 3 \\ {[2]} \\ 1 \end{gathered}$ | \square If the inverter does not receive any valid message (via serial interface) during the interval programmed at P314, the action set at P313 will be performed and error E28 is shown on the display.
 \square The different actions are:
 - P313=0 : disables inverter via deceleration ramp;
 - P313=1 : triggers the general disable command of the inverter;
 - P313=2 : indicates only E28;
 - P313=3 : changes the command reference to local mode.
 0 If the communication is re-established, E28 switches off and the inverter does not change its status. | | |
| P314
 Serial Interface Watchdog Timeout | $\begin{gathered} 0.0 \ldots 99.9 \\ \text { [0.0-Disable } \\ \text { Function] } \\ 0 \end{gathered}$ | \square Actuation interval of the Serial Watchdog. If the value of P314 is equal to 0 , the Serial Watchdog function is disabled. Otherwise, if the the inverter does not receive any valid message during this interval, it assumes the action that has been programmed at P313. | | |

6.3.4 Motor Parameters - P399 ... P499

P400 ${ }^{(1)}$	0...600V [according to the inverter model and market] 1V
Rated Motor	
Voltage	
\square This parameter in only available in Vector Control (P202=2)	
P401	$0.3 \times \mathrm{PI}_{\text {nom }} \ldots .1 .3 \times \mathrm{PI} \mathrm{n}_{\text {nom }}$
Rated Motor	[according to
Current	the inverter model]
	$\begin{gathered} 0.01 \mathrm{~A}(<10.0 \mathrm{~A}) ; \\ 0.1 \mathrm{~A}(>9.99 \mathrm{~A}) \end{gathered}$

Description / Notes
[Factory Setting]

Parameter
P399 ${ }^{(1)}$
Rated Motor
Efficiency
A. This
parameter is only
available in Vector
Control (P202=2)

Unit

50.0...99.9\%
[according to the inverter model]
0.1\%

This parameter is only Control (P202=2)
\square Set this parameter according to motor nameplate.
\square If this data are not available:

- If the rated motor power factor is known ($\cos \varnothing=P 407$), determine the efficiency by the following equation:

$$
\mathrm{P} 399=\eta_{\text {nom }}=433 \times \frac{\mathrm{P}}{\mathrm{~V} \times I \times \cos \varnothing}
$$

where P is the motor power in HP, V is the rated motor voltage in Volts $(\mathrm{V})-\mathrm{P} 400$, and I is the rated motor current in ampere (A) - P401.

- For an approximation, use the values from the table of item 9.3.

■ It is used only in Vector Control Mode.
\square Rated motor voltage indicated on the motor nameplate.
It is the rms-value of the motor line voltage.
\square Set this parameter according to the motor nameplate data and the connection digram in the terminal box.
\square This parameter is used only in Vector Control Mode.
\square Rated motor current indicated on the motor nameplate. It is the rms-value of the rated motor line current.
\square Set this parameter according to the motor nameplate data and the connection digram in the terminal box.
® This parameter is used in V/F control [slip compensation function and automatic torque boost function (automatic lxR)] and vector control.

P402	0...9999rpm
Rated Motor	[according to

Speed the inverter model and market]

1 rpm
This
parameter in only available in Vector Control (P202=2)

T Set this parameter according to the motor nameplate data. \square This parameter is used only in Vector Control mode.

P403 ${ }^{(1)}$

Rated Motor
Frequency

This
parameter in only available in Vector Control (P202=2)
$0.00 \ldots \mathrm{P} 134$
.00 Hz or 60.00 Hz depending on the market] $0.01 \mathrm{~Hz}(<100.0 \mathrm{~Hz})$; $0.1 \mathrm{~Hz}(>99.99 \mathrm{~Hz})$
\square Set this parameter according to the motor nameplate data. \square This parameter is used only in Vector Control mode.

[^15]
where P is the motor power in HP, V is the rated line voltage of the motor in volts $(\mathrm{V})-\mathrm{P} 400$, and I is the rated motor current in ampère (A) - P401.

- For an approximation value, use the values of the table in item 9.3. \square This parameter is used in V/F control [slip compensation function and automatic torque boost function (automatic lxR)] and vector control.
\square Through this parameter you can run the self-tuning routine, where the stator resistance of the used motor is estimated automaticaaly by the inverter. The motor will not run.
By setting $\mathrm{P} 408=1$, the Self-Tuning routine is started.
\square During the running of the Self-Tuning routine, the display flashes

T If the interruption of the Self-Tuning routine is desired, press
$\boxed{\square}$ If the estimated value of the motor stator resistance is too high for the applied inverter (examples: motor is not connected or motor is too small for the inverter) the inveter displays E14. You can only exit from this condition by switching off the inverter.

[^16]| Parameter | Range [Factory Setting] Unit | Description / Notes |
| :---: | :---: | :---: |
| P409 | 0.00...9.99 | \square Value estimated by the Self-Tuning routine. |
| Motor Resistance | [According to the inverter type] 0.01 | The table in item 9.3 shows the stator resistance for standard, IV pole, $60 \mathrm{~Hz}, 220 / 380 \mathrm{~V}$ motors.
 \square The value of the stator resistance can also be entered at P409 directly, if this value is known. |
| \square This parameter is shown of the display only when in Vector Control (P202=2) | | NOTE!
 P409 shall contain the equivalent value of the stator resistance of one phase, by supposing that the the motor is star connected (Y). |
| | | [NOTE!
 If the value of P409 is to high for the motor, a disabling of the inverter can occur due to overcurrent (E00). |

6.3.5 Special Function Parameters - P500 ... P599

6.3.5.1 PID Introduction

6.3.5.2 Description

\square CFW-08 is fitted with the PID regulator that can be used for closed loop process control. This function acts as a proportional, integral and derivative regulator, superimposed on the normal inverter speed control.
\square The speed will be changed in order to maintain the process variable (the variable that should be controlled - for instance: water level of a container) at the desired value, set in the setpoint.
\square This regulator can, for instance, control the flow in a piping system. The setpoint (flow) can be given by the analog input Al2 or through P525 (digital setpoint), and the flow feedback signal is given at analog input Al1.
■ Other application examples: level control, temperature control, dosing control, etc.
\square Figure 6.25 shows the block diagram of the PID regulator.
\square The feedback signal must be sent to the analog input Al1.
\square The setpoint is the value of the process variable at which the operation is desired. This value is entered as a percentage and is defined by the following equation:
setpoint $(\%)=\frac{\text { setpoint (UP) }}{\text { full scale os the used sensor (UP) }} \times \mathrm{P} 234 \times 100 \%$
where both the setpoint and the full scale value of the sensor are given by the process unit (${ }^{\circ} \mathrm{C}$, bar, etc.).
Example: a pressure transducer (sensor) with ouput 4-20mA and full scale of 25 bar (i.e., $4 \mathrm{~mA}=0$ bar and $20 \mathrm{~mA}=25$ bar) and P234=2.00. If the control of 10 bar is desired, you should enter the following setpoint:

$$
\text { setpoint }(\%)=\frac{10}{25} \times 2 \times 100 \%=80 \%
$$

\square The setpoint can be defined via:

- Keypad: digital setpoint, parameter P525.
- Analog input AI2 (only available in the CFW-08 Plus): the percentage value is determined by considering P238, P239 and P240 (see description of these parameters).
\square The parameter P040 indicates the value of the process variable (feedback) in the scale selected at P528, that is set according to the following equation:

$$
\text { P528 }=\frac{\text { full scale value of the used sensor }}{\text { P234 }}
$$

Example: Consider the data of the example above (pressure sensor of $0-25$ bar and P234=2.00). P528 must be set to $25 / 2=12.5$.
\square The parameter P040 can be selected as the display default parameter P205=6.

Figure 6.25 - Block diagram of the PID regulator function

When the PID function ($\mathrm{P} 203=1$) is set:
\square The digital input DI3 is automatically set to manual/automatic (P265=15). Thus when DI3 is open, the manual mode is activated and when DI3 is closed, the PID regulator starts to operate (closed loop control - automatic mode).
If the function of this digital input (DI3) is changed, the operation of the inverter will be always in manual mode.
\square If P221 or P222 is equal to $1,4,5,6,7$ or 8 the E24 error mesage will be displayed. Set P221 and P222 equal to 0 or 2 according to the requirement.
\square The JOG and the FWD/REV functions are disabled. The inveter enabling and disabling commands are defined by P229 and P230.
\square In the manual mode, the frequency reference is given by F^{*}, as shown in figure 6.1.
\square When the operation mode is changed from manual to automatic, P525 is automatically set to the value of P040 (at the instant immediately before the commutation). Thus when the setpoint is defined by P525 (P221 or P222=0), the changing from manual to automatic is smooth [there's not occur abrupt oscillation in the frequency (speed) reference].
\square The analog output can be programmed to indicate the process variable (P040) or the PID setpoint with P251=6 or 4, respectively.
\square Figure 6.26 shows an application example of an inverter controlling a process in closed loop (PID regulator).

6.3.5.3 PID Start-Up Guide

\square Please find below a start-up procedure for the PID regulator: Initial Definition

1) Process - Definition of the PID action type that the process requires: direct or reverse. The control action must be direct (P527=0) when it is required to increase the motor speed and so also increment the process variable. Otherwise select reverse (P527=1).
Examples:
a) Direct: pump driven by inverter and filling a tank where the PID regulates the tank level. To increase the level height (process variable) the flow must be increased and consequently also the motor speed must be increased.
b) Reverse: fan driven by an inverter to cool a cooling tower, with the PID controlling the temperature of this tower. When it is required to increase the tower temperature (process variable), the cooling power must be descreased by reducing the motor speed.
2) Feedback (process variable measurement): The feeback is always realized via analog input Al1.
\square Transducer (sensor) to be used for the feedback of the control variable: it is recommended to use a sensor with full scale with at least 1.1 times higher than the largest value of the process variable that shall be controlled. Example: If a pressure control at 20bar is desired, select a sensor with a control capacity of at least 22bar.
\square Signal type: set P235 and the position of the switch S1 on the control board according to the transducer signal (4-20mA, 020 mA or $0-10 \mathrm{~V}$).
$\boxed{\square}$ Set P234 and P236 according to the variation range of the used feedback signal (for more details, see description of the parameters P234 to P240).

Example: suppose the following application:

- full scale of the transducer (maximum value at the transducer output) = 25bar (FS=25);
- operation range (range of interest) $=0$ to $15 \operatorname{bar}(F O=15)$.

Considering a safety margin of 10%, the measuring range of the process variable must be set to: 0 a 16.5bar.
Thus: $\mathrm{FM}=1.1 \times F \mathrm{~F}=16.5$.
Parameter P234 must be set to:

$$
\mathrm{P} 234=\frac{\mathrm{FS}}{\mathrm{FM}}=\frac{25}{16.5}=1.52
$$

As the operation range starts at zero, $\mathrm{P} 236=0$, thus a setpoint of 100% represents 16.5 bar , i.e., the operation range, in percentage, is within: 0 to 90.9%.

NOTE!

In the most cases it is not necessary to set the gain and the offset ($\mathrm{P} 234=1.00$ and $\mathrm{P} 236=0.0$). Thus the percentage value of the setpoint is equivalent to the percentage value of the full scale of the used sensor. However if the maximum resolution of the analog input Al 1 (feedback) is desired, set P234 and P238 according to comments above.
\square Setting of the display indication to the process variable measuring unit (P040): set P528 according to the full scale of the used transducer (sensor) and defined P234 (see description of parameter P528 below).
3) Reference (setpoint):
\square Local/remote mode.
\square Reference source: set P221 or P222 according to definiton above.
4) Speed limits: set P133 and P134 according to the application.
5) Indication:
\square Display (P040): P040 can be the display default parameter by setting P205=6.
\square Analog output (AO): it is possible to indicate the process variable (feedback) or the setpoint of the PID regulator at the analog output by setting P251 to 6 or 9 , respectively.

Start-up

1) Manual operation (DI 3 open):
\square Display indication (P040): check indication based on external measurement and on the feedback signal (transducer) at Al1.
\square Indication of the process variable at the analog output (AO), if P251=6.
$\boxed{\text { Bet the frequency reference }\left(\mathrm{F}^{*}\right) \text { until the desired value of the }}$ process variable is reached.
Only then switch to the automatic mode (inverter will set automatically P525=P040).
2) Automatic operation: close DI3 and make the dynamic setting of the PID regulator, i.e., adjust the proportional gain (P520), integral gain (P521) and differential gain (P522).
Remote mode operation (P220=1)
Setpoint via keypad.
Inverter Parametrization:

$\mathrm{P} 220=1$	$\mathrm{P} 520=1.000$
$\mathrm{P} 222=0$	$\mathrm{P} 21=1.000$
$\mathrm{P} 234=1.00$	$\mathrm{P} 522=0.000$
$\mathrm{P} 235=1$	$\mathrm{P} 525=0$
$\mathrm{P} 238=0.00$	$\mathrm{P} 526=0.1 \mathrm{~s}$
$\mathrm{P} 203=1$	$\mathrm{P} 527=0$
$\mathrm{P} 205=6$	$\mathrm{P} 528=25$

Figure 6.26 - Application example of an inverter with PID regulator

Parameter	Range [Factory Setting] Unit	Description / Notes			
P520 PID Proportional Gain	$\begin{gathered} 0.000 \ldots 7.999 \\ {[1.000]} \\ 0.001 \end{gathered}$	\square The integral gain can be defined as being the time required to change the PI regulator output from 0 to P 134 , that is given, in seconds, by the equation below:			
P521 PID Integral Gain P522 PID Differential Gain	$\begin{gathered} 0.000 \ldots 9.999 \\ {[1.000]} \\ 0.001 \\ 0.000 \ldots 9.999 \\ {[0.000]} \\ 0.001 \end{gathered}$	for the following conditions: - P040=P520=0; - DI3 in automatic position.			
P525 The PID Setpoint	$\begin{gathered} 0.00 \ldots 100.0 \% \\ {[0.00]} \\ 0.01 \% \end{gathered}$	Provides the setpoint (reference) of the process via cointrol via the and keys for the PID regulator, provided that P221=0 (local) or P222=0 (remote) has been set to automatic mode. If it has been set to Manual Mode, the frequency reference is given by P121. If $\mathrm{P} 120=1$ (backup active), the value of P525 is maintained at the last set value (backup), even when the inverter is disabled or tuned off.			
P526 Process Variable Filter	$\begin{gathered} 0.00 \ldots 10.00 \mathrm{~s} \\ {[\mathbf{0 . 1 0 \mathrm { s }]}} \\ 0.01 \mathrm{~s} \end{gathered}$	$\boxed{\square}$ It sets the time constant of the Process Variable Filter. T It is useful for noise filtering at the analog input Al1 (feedback of the process variable).			
P527	$\begin{aligned} & 0 \ldots 1 \\ & {[0]} \end{aligned}$	凹 Defines the action type of the PID regulator.			
PID Action		P527 Action Type 0 Direct 1 Reverse			
		\square Select it according to the table below:			
			Process variable requirement		P527 to be used
			Increase		0 (Direct)
			Decrease		1 (Reverse)
$\overline{P 528}$ Process Variable Scale Factor	$\begin{gathered} 0.00 \ldots 99.9 \\ {[1.00]} \\ 0.01(<10) ; \\ 0.1 \text { (>9.99) } \end{gathered}$	\square Defines the process variables scale. It makes the conversion between percentage value (used internally by the inverter) and the process variable unit. 0 P528 defines how the process variable at P040 will be shown: P040=value \% x P528. Set P528 to: $\text { P528 }=\frac{\text { full scale of the used sensor (FM) }}{\text { P234 }}$			
$\overline{\text { P536 }}$ Automatic Setting of P525	$\begin{aligned} & 0 \ldots 1 \\ & {[0]} \end{aligned}$	It is posible to enable/disable the copy of P040 (PID process variable) in P525 when the changing from manual to automatic mode using parameter P536, that is described below.			
		P536 Function			
		0	Active (copies the value of P040 in P525)		
		1	Inactive (does not copies the value of P040 in P525)		

DIAGNOSTICSAND TROUBLESHOOTING

This chapter assists the user to identify and correct possible faults that can occur during the CFW-08 operation. Also instructions about required periodical inspections and cleaning procedures are also provided.

7.1 FAULTS AND POSSIBLE CAUSES

When a fault is detected, the inverter is disabled and the fault code is displayed on the readout in EXX form, where $\underline{X X}$ is the actual fault code.

To restart the inverter after a fault has occurred, the inverter must be reset. The reset can be made as follows:

■ disconnecting and reapplying the AC power (power-on reset);
\square by pressing the 0 key (manual reset);
■ automatic reset through P206 (auto-reset);
v via digital input: DI3 (P265 = 10) or DI4 (P266 = 10).
The table below defines each fault code, explains how to reset the fault and shows the possible causes for each fault code.

NOTE!

The fault E22, E23, E25, E26, E27 and E28 are related to the serial communication and are described in Item 8.18.5.3

FAULT	RESET ${ }^{(1)}$	POSSIBLE CAUSES
E00 Output Overcurrent (between phases or between phase and ground)	Power-on Manual (key Auto-reset DI	Short-circuit between two motor phases. Short-circuit between ground and one of more output phases. Motor cable capacitance to ground too high, causing peak current at the output (see note on next page) Inertia of the load too high, or acceleration ramp too short. P169 set too high. Undue set of P136 and/or P137, when in V/F control (P202=0 or 1). Undue set of P178 and/or P409 when in vector control (P202=2). IGBT transistor module is short-circuited
E01 DC Link Overvoltage		Power supply voltage too high, causing a DC link voltage higher than the allowed value: Ud $>410 \mathrm{~V}$ - 200-240V models Ud $>820 \mathrm{~V}-380-480 \mathrm{~V}$ models Load inertia too high or deceleration ramp too short. Setting of P151 too high. Load inertia too high and acceleration ramp too short (vector control - P202=2)
E02 DC Link Undervoltage		Power supply voltage too low, causing a DC link voltage higher than the allowed value (read the value in parameter P004): Ud<200V - 200V-240V models Ud<360V-380V-480V models

FAULT	RESET ${ }^{(1)}$	POSSIBLE CAUSES
E04 Inverter Overtemperature	『Power－on \square Manual（key VAuto－reset ODI	『Ambient temperature too high（ $>40^{\circ} \mathrm{C}$ ）and／or output current too high． ■Blower locked or defective．
E05 Motor／Inverter Overload Ixt Function		－P156 set too low for the motor that is being used． MMotor is under an actual overload condition．
E06 External Fault		ØAni DI（D13 and／or DI4）programmed for external fault detection is open（not connected to GND－XC1）．
E08 CPU Error （Watchdog）		『Electrical noise．
$\begin{gathered} \hline \text { E09 } \\ \text { Program Memory } \\ \text { Error (Checksum) } \\ \hline \end{gathered}$	Contact WEG （refer to section 7．3）	凹Memory with corrupted values．
E10 Keypad Error	凹Power－on 『Manual（key 0 ） TAuto－reset ロDI	\square Defective contact in the HMI－CFW08－RS cable． \boxtimes Electrical noise in the installation （electromagnetic interference）．
E14 Self－Tuning Fault	『Power－on VManual（key	$\square_{\text {Motor is not connected to the inverter output．}}$ \boxtimes Wrong motor connection（wrong voltage，lack of one phase）． \square The used motor is too small for the inverter （P401＜0．3 x P295）．Use V／Fcontrol． \square The value of P409（stator resistance）is too high for the used inverter．
$\begin{gathered} \text { E24 } \\ \substack{\text { Programming } \\ \text { error }} \end{gathered}$	It is automatically reset when the incompatible parameters are changed	\square Incompatible parameters were programmed Refer to table 5．1．
$\begin{gathered} \text { E31 } \\ \text { Keypad (HMI) } \\ \text { Connection Fault } \end{gathered}$	It is reset automatically when the communication between inverter and the keypad is reestablished．	Keypad cable misconnected． 『Electrical noise in the installation（electromagnetic interference）．
E41 Self－Diagnosis Fault	Contact WEG （refer to section 7．3）	\square Inverter power circuit is defective．

Note：

（1）In case of E04 Fault due to inverter overtemperature，allow the inverter to cool down before trying to reset it．
In the types 10A／200－240 and 10A／380－480V fitted with internal Class A RFI－filters，the fault E04 can be caused by internal airflow overtemperature．Please check blower installed inside．

NOTE！

Long motor cables（longer than 150ft（ 50 m ））can generate excessive capacitance to ground．This can cause nuisance ground fault trip and consequently disabling by E00 fault immediately after the inverter has been enabled．Solution：
\square Reduce the switching frequency（P297）．
$\boxed{\square}$ Connect a load reactor in series with the motor supply line．
Refer to Section 8．16．

NOTE!

The faults act as follows:
■ E00 ... E06: switches off the relay that has been programmed to "no fault", disables the PWM pulses, displays the fault code on the display and the "ERROR" LED flashes.
Some data are saved on the EEPROM memory: keypad reference and EP (electronic potentiometer) (when the function "backup of the references" at P120 has been enabled), the occurred fault number, the status of the integrator of the IXT function (overcurrent).
\square E24: Indicates the fault code on the LED display.
■ E31: Inverter proceeds to operate normally, but it does not accept the keypad commands; the fault code is indicated on the LED display.

■ E41: does not allow inverter operation (it is not possible to enable the inverter); the fault code is indicated on the LED display and on the "ERROR" LED.

Indication on the Inverter Status LEDs:

7.2 TROUBLESHOOTING

PROBLEM	POINT TO BE CHECKED	CORRECTIVE ACTION
Motor does not run	Incorrect wiring	1.Check the power and the control connections. For example, the digital inputs DIx programmed for Start/Stop or General Enable or No External Fault must be connected to GND (pin 5 of the control connector XC1).
	Analog reference (if used)	1.Check if the external signal is properly connected. 2.Check the status of the speed potentiometer (if used).
	Incorrect Programming	1.Check if the parameters are properly programmed for the application.
	Fault	1.Check if the inverter has not been disabled due to detected fault condition (refer to Table above).
	Motor Stall	1.Reduce the motor load. 2.Increase P169 or P136/P137.

PROBLEM	POINT TO BE CHECKED	CORRECTIVE ACTION
Motor speed varies (oscillates)	Loose connections	1.Disable the inverter, switch OFF the power supply and tighten all connections.
	Defective speed potentiometer	1.Replace the defective speed potentiometer.
	Variation of the external analog reference	1.Identify the cause of the variation.
Motor speed too high or too low	Programming error (reference limits)	1.Check if the contents of P133 (minimum frequency) and P134 (maximum frequency) are according to the motor application.
	Signal of the Reference Control	1.Check the control signal level of the reference. 2. Check the programming (gains and offset) at P234 to P240.
	Motor nameplate data	1.Check if the used motor meets the application requirements.
Display OFF	Keypad connection	1.Check the keypad connections to the inverter.
	Power supply	1.The power supply must be within the following ranges: 200-240V models: - Min: 170V - Max: 264V 380-480V models: - Min: 323V - Max: 528V

7.3 CONTACTING WEG

NOTE!

When contacting WEG for services, please have the following data on hand:
团 Inverter model;
■ serial number, manufacturing date and hardware revision, as indicated on the inverter nameplate (refer to section 2.4);
Toftware version (refer to section 2.2);
information about the application and inverter programming.

7.4 PREVENTIVE MAINTENANCE

DANGER!

Always disconnect the power supply voltage before touching any component of the inverter.

Even after switching OFF the inverter, high voltages may be present. Wait 10 minutes to allow complete discharge of the power capacitors. Always connect the equipment frame to a suitable ground (PE) point.

ATTENTION!

Electronic boards have components sensitive to electrostatic discharges. Never touch the components or connectors directly. If this is unavoidable, first touch the metallic frame or use a suitable ground strap.

Never apply a high voltage test on the inverter! If this is necessary, contact WEG.

To avoid operation problems caused by harsh ambient conditions, such as high temperature, moisture, dirt, vibration or premature ageing of the components, periodic inspections of the inverter and installations are recommended.

COMPONENTS	PROBLEMS	CORRECTIVEACTIONS
Terminal blocks	Loose screws	
	Loose connectors	
Blowers (1) / Cooling system	Blowers are dirty	Clean them
	Abnormal acoustic noise	Replace the blowers
	Blower is not running	
	Abnormal vibration	Clean or replace them
	Dust in the air filters	Clean them and/or replace them
Printed circuit boards	Dust, oil or moisture accumulation	Replace them
	Smell	

Table 7.1 - Periodic inspection after start-up

Notes:

(1) It is recommended to replace the blowers after 40,000 hours of operation.

ATTENTION!

If the inverter is stored for long periods, we recommend to power it up once a year during 1 hour. For all models (200-240V or 380-480V) apply supply voltage of approx. 220 V , three-phase or single phase input, 50 or 60 Hz , without connecting motor at output. After this energization, wait 24 hours before installing it.

7.4.1 Cleaning Instructions

When required to clean the inverter, flow the instructions below:
a) Cooling System:

Remove AC power from the inverter and wait 10 minutes.
Remove all dust from ventilation openings by using a plastic brush or a soft cloth.
\square Remove dust accumulated on the heatsink fins and from the blower blades with compressed air.
b) Electronic Boards:

Remove AC power from the inverter and wait 10 minutes.
Disconnect the inverter cables, ensuring that they are marked carefully to facilitate later reconnection.
\square Remove the keypad and the plastic cover (refer to section 3).
Remove all dust from the printed circuit boards by using an anti-static soft brush and/or remove it with an ionized compressed air gun; (for example: Charges Burtes Ion Gun (non nuclear) Ref. A6030-6 DESCO).

CFW-08 OPTIONS AND ACCESSORIES

This Chapter describes the optional devices that can be used internal or external with the CFW-08. Table below shows a list of existing optional devices and the types to which they are applied. Are also given information about the optional devices and their application.

Name	Function	Models to which are applied	WEG Item Number
HMI-CFW08-P	Parallel keypad (HMI)	All	417100868
TCL-CFW08	Over to be inserted in the place of the parallel HMI (when it is mounted in the inverter or it is remote - kit KMR-CFW08-P).		417100881
HMI-CFW08-RP	HMI parallel keypad. For remote use with MIP-CFW08-RP interface and CAB-CFW08-RP (up to 10m).		417100991
MIP-CFW08-RP	Interface for the external parallel keypad (remote) HMI-CFW08-RP		417100990
HMI-CFW08-RS	HMI serial keypad. For remote use with MIS-CFW08-RS interface and CAB-RS (up to 10m). Copy Function.		417100992
MIS-CFW08-RS	Interface for the external serial keypad (remote) HMI-CFW08-RS		417100993
CAB-RS-1	Cable for the remote serial keypad - cable: 1m		0307.7827
CAB-RS-2	Cable for the remote serial keypad - cable: 2 m		0307.7828
CAB-RS-3	Cable for the remote serial keypad - cable: 3m		0307.7829
CAB-RS-5	Cable for the remote serial keypad - cable: 5m		0307.7830
CAB-RS-7.5	Cable for the remote serial keypad - cable: 7.5m		0307.7831
CAB-RS-10	Cable for the remote serial keypad - cable: 10m		0307.7832
CAB-RP-1	Cable for the remote parallel keypad - cable: 1m		0307.7711
CAB-RP-2	Cable for the remote parallel keypad - cable: 2 m		0307.7712
CAB-RP-3	Cable for the remote parallel keypad - cable: 3m		0307.7713
CAB-RP-5	Cable for the remote parallel keypad - cable: 5m		0307.7833
CAB-RP-7.5	Cable for the remote parallel keypad - cable: 7.5m		0307.7834
CAB-RP-10	Cable for the remote parallel keypad - cable: 10m		0307.7835
KCS-CFW08	RS-232 communication interface (PC, PLC, etc). RS-485 possible when module MIW-02 is used.		417100882
KSD-CFW08	RS-232 PC Communication kit : interface RS-232 (KCS-CFW08), cable RJ-6 to DB9, 3m long, software "SUPERDRIVE".		417100875
KMD-CFW08-M1	Rail Kit -DIN EN 50.022	$\begin{gathered} \hline 1.6-2.6-4.0-7.0 \mathrm{~A} / \\ 200-240 \mathrm{~V} \\ 1.0-1.6-2.6-4.0 \mathrm{~A} \\ 380-480 \mathrm{~V} \end{gathered}$	417100879
KFIX-CFW08-M1	Fix Kit -M1	$\begin{gathered} 1.6-2.6-4.0-7.0 \mathrm{~A} / \\ 200-240 \mathrm{~V} \\ 1.0-1.6-2.6-4.0 \mathrm{~A} \\ 380-480 \mathrm{~V} \end{gathered}$	417100994
KFIX-CFW08-M2	Fix Kit - M2	$\begin{gathered} \hline 7.3-10-16 \mathrm{~A} / \\ 200-240 \mathrm{~V} \\ 2.7-4.3-6.5-10 \mathrm{~A} \\ 380-480 \mathrm{~V} \end{gathered}$	417100995
KN1-CFW08-M1	Kit NEMA 1/IP20 for the connection of the metallic conduit -M1	$\begin{gathered} 1.6-2.6-4.0-7.0 \mathrm{~A} / \\ 200-240 \mathrm{~V} \\ 1.0-1.6-2.6-4.0 \mathrm{~A} \\ 380-480 \mathrm{~V} \\ \hline \end{gathered}$	417100877
KN1-CFW08-M2	Kit NEMA1/IP20 for the connection of the metallic conduit -M2	$\begin{gathered} 7.3-10-16 \mathrm{~A} / \\ 200-240 \mathrm{~V} \\ 2.7-4.3-6.5-10 \mathrm{~A} \\ 380-480 \mathrm{~V} \end{gathered}$	417100880
MIW-02	RS-232 to RS-485 conversion module (external). CFW-08 must be fitted with KCS-CFW08 module.	All	417100543

Name	Function	Models to which are applied	WEG Item Number
FIL1	Internal class A suppressor filter RFI - - $7.3 \mathrm{~A} / 200-240 \mathrm{~V}$	7.3-10A/200-240V	4151.2661
FIL2	Internal class A suppressor filter RFI- A - 2.7-4.3-6.5-10A/380480 V	$\begin{gathered} \hline 2.7-4.3-6.5-10 \mathrm{~A} / \\ 380-480 \mathrm{~V} \end{gathered}$	4151.0994
FIL4	Internal class A suppressor filter - RFI-13-16A/380-480V	13-16A/380-480V	4151.2148
FEX1-CFW08	10A/200-240V class A RFI filter - footprint	$\begin{gathered} \hline 1.6-2.6-4.0 \mathrm{~A} / \\ 200-240 \mathrm{~V} \end{gathered}$	41718238
FEX2-CFW08	5A/380-480V class A RFI filter - footprint	$\begin{gathered} 1.0-1.6-2.6-4.0 \mathrm{~A} / \\ 380-480 \mathrm{~V} \end{gathered}$	41718239
FS6007-16-06	External class B suppressor filter - RFI - 1.6-2.6-4.0A/ 200-240V	$\begin{gathered} 1.6-2.6-4.0 \mathrm{~A} / \\ 200-240 \mathrm{~V} \end{gathered}$	0208.2072
FN3258-7-45	External class B suppressor filter - RFI - 1.0-1.6-2.6-2.7-4.0-4.3A/380-480V	$\begin{gathered} \hline 1.0-1.6-2.6-2.7- \\ 4.0-4.3 \mathrm{~A} \\ 380-480 \mathrm{~V} \\ \hline \end{gathered}$	0208.2075
FS6007-25-08	External class B suppressor filter RFI - 7.3A/200-240V single-phase	7.3A/200-240V	0208.2073
FS6007-36-08	External class B suppressor filter RFI - 10A/200-240V single-phase	10A/200-240V	0208.2074
FN3258-16-45	External class B suppressor filter - RFI - $6.5-10-13 \mathrm{~A} / 380-480 \mathrm{~V}$	$6.5-10-13 \mathrm{~A} /$ $380-480 \mathrm{~V}$, $7 \mathrm{~A} / 200-240 \mathrm{~V}$, $7.3-10 \mathrm{~A} / 200-240 \mathrm{~V}$ three-phase	0208.2076
FN3258-30-47	External class B suppressor filter - RFI-16A/380-480V	$\begin{aligned} & \hline 16 \mathrm{~A} / 200-240 \mathrm{~V} \text {; } \\ & 16 \mathrm{~A} / 380-480 \mathrm{~V} \end{aligned}$	0208.2077
TOR1-CFW08	CM choke toroid \#1 (Thornton NT35/22/22-4100-IP12R) and plastic clamp	$\begin{gathered} 2.7-4.3-6.5-10 \mathrm{~A} / \\ 380-480 \mathrm{~V} \\ \hline \end{gathered}$	417100895
TOR2-CFW08	CM choke toroid \#2 (Thornton NT52/32/20-4400-IP12E)	$\begin{gathered} 2.7-4.3-6.5-10- \\ 13-16 \mathrm{~A} / 380-480 \mathrm{~V} \end{gathered}$	417100896

Table 8.1-Available Optional Devices for the CFW-08
8.1 HMI-CFW08-P

Parallel keypad (HMI): is the keypad that is mounted at the front side of the inverter.

Figure 8.1 - Dimensions of the parallel HMI - HMI-CFW08-P

8.1.1 Instruction for Insertion and Removing of the HMI-CFW08-P

1. Place the keypad as shown above.
2. Press it.
(a) Insertion

3. Unlock the keypad by using a screwdriver as shown above.
4. Remove the keypad by pulling on the lateral sides.
(b) Removing

Figure 8.2-Instructions for HMI-CFW-08-P insertion and removing

8.2 TCL-CFW08

Dummy panel to be inserted in the place of the parallel keypad (HMI-CFW08-P).

Figure 8.3 - Dimensions of the dummy panel TCL-CFW08 for the parallel HMI
8.3 HMI-CFW08-RP

External parallel keypad: this keypad is mounted externally to the inverter and can be used in the following cases:
\square Applications that require a remote keypad (up to $10 \mathrm{~m} / 394 \mathrm{in}$);
\square Instalation of a keypad directly on the panel door ($0,12 \mathrm{in}$);
\square For a better visualization on the display and to facilitale the key operation, when compared with the parallel keypad (HMI-CFW08-P). The external parallel keypad (HMI-CFW08-RP) must be used with the MIP-CFW08-RP interface and CAB-RP-X cable.

Figure 8.4 - Dimensions of the HMI-CFW08-RP
8.3.1 HMI-CFW08-RP Installation

The HMI-CFW08-RP can be installed directly on the panel door ($0,12 \mathrm{in}$), as shown in the figures below:

Figure 8.5 - Installation of the HMI-CFW08-RP
8.4 MIP-CFW08-RP

Isolation interface: Isolation interface installed in the inverter instead of the standard keypad only when the remote parallel keypad (HMI-CFW08$R P$) is used.
The procedures for insertion and removing of the MIP-CFW08-RP are similar to those shown in figure 8.13 for the KCS-CFW08 module.

LATERAL VIEW

FRONT VIEW

Figure 8.6 - Dimensions of the MIP-CFW08-RP

8.5 CAB-RP-1
CAB-RP-2
CAB-RP-3
CAB-RP-5
CAB-RP-7.5
CAB-RP-10

Cables used to connect the inverter to the external parallel interface keypad (HMI-CFW08-RP).
There are 6 cables options ranging in lenghts from 1 m (39in) to 10 m (394in). The user must select among these lenghts according to his requirement.
The cable CAB-RP must be laid separately from the power wiring by meeting the requirements for the control wiring (refer to item 3.2.4).

Figure 8.7-CAB-RP-X

External serial keypad: this interface is mounted external to the inverter and must be used when the copy function is needed:
\square For more details about copy function refer to the description of the parameter P215 in section 6.
It operates with the MIS-CFW08-RS and the cable CAB-RS-X, which length must be chosen according to the needs (up to 10 m).

Figure 8.8 - Dimensions of the HMI-CFW08-RS

LATERAL VIEW

FRONT VIEW

Figure 8.6 - Dimensions of the MIP-CFW08-RP
8.5 CAB-HMIO8-RP-1

CAB-HMIO8-RP-2
CAB-HMIO8-RP-3
CAB-HMIO8-RP-5
CAB-HMIO8-RP-7. 5
CAB-HMIO8-RP-10

Cables used to connect the inverter to the external parallel interface keypad (HMI-CFW08-RP).
There are 6 cables options ranging in lenghts from 1 m (39in) to 10 m (394in). The user must select among these lenghts according to his requirement.
The cable CAB-HMI08-RP must be laid separately from the power wiring by meeting the requirements for the control wiring (refer to item 3.2.4).

Figure 8.7-CAB-CFW08-RP

External serial keypad: this interface is mounted external to the inverter and must be used when the copy function is needed:
\square For more details about copy function refer to the description of the parameter P215 in section 6.
It operates with the MIS-CFW08-RS and the cable CAB-RS-X, which length must be chosen according to the needs (up to 10 m).

Figure 8.8 - Dimensions of the HMI-CFW08-RS

Function via HMI-CFW08-RS	Local Mode	Remote Mode
Frequency reference	$\mathrm{P} 221=0$	$\mathrm{P} 222=0$
Commands (*)	$\mathrm{P} 229=2$	$\mathrm{P} 230=2$
Forward/Reverse Selection	$\mathrm{P} 231=2$	
Loca/Remote	$\mathrm{P} 220=5$ (default local) or	
Selection	$\mathrm{P} 220=6$ (default remote)	

Note:
Factory setting
(*) Except the forward/reverse selection that also depends on the parematerP231.
Table 8.2 - Parameter setting for HMI-CFW08-RS operation
8.6.3 Keypad Copy Function
8.7 MIS-CFW08-RS

The HMI-CFW08-RS keypad still has an additional function: the keypad copy function. This function is useful when one wants to copy the settings of one inverter (source inverter) to another (target inverter) or one needs to program several inverters with the same settings.
This is done as follows: the parameters of the source inverter are copied to a non-volatile memory of the HMI-CFW08-RS keypad, and then from this keypad to another inverter ("target inverter"). The keypad copy function is controlled by the paramater P215.
For further information on this function refer to section 6.

Serial interface used exclusively for HMI-CFW08-RS keypad connection to inverter.
The procedures for insertion and removing of the MIS-CFW08-RS are similar to those shown in Figure 8.13 for the KCS-CFW08 module.

Figure 8.11 - Dimensions of the MIS-CFW08 serial communication module fot the extern serial HMI
8.8 CAB-RS-1

CAB-RS-2
CAB-RS-3
CAB-RS-5
CAB-RS-7.5
CAB-RS-10
Cables used to connect the inverter to the external serial interface keypad (HMI-CFW08-RS). There are 6 cable options ranging in lengths from 1 m to 10 m . The user must select among these lengths according to his requirement.
The cable CAB-RS must be laid separately from the power wiring by meeting the requirements for the control wiring (refer to item 3.2.4).

Figure 8.12- CAB-HMIO8-S cable the HMI-CFW08-RS

8.9 KCS-CFW08

Serial communication module RS-232: is inserted in the place of the parallel keypad, enabling the RS-232 connection (connector RJ-6).
The RS-232 serial interface enables the point-to-point connection (inverter - master). It is gavanically isolated and enables the use of interconnecting cables in lengths up to 10 m .
Through the RS-232 serial interface you can control, set parameters and monitor the CFW-08. The communication protocol is based on the communication by enquiry/response (master/slave), according to ISO 1745, ISO 646, with character exchange of type ASCII between the inverter (slave) and the master. The Master can be a PLC, a PC, etc. The maximum transfer rate is 38400 bps.
For the RS-485 serial communication, both point-to-point (an inverter and a master) or multipoint (up to 30 inverters and one master), you can connect the KCS-CFW08 module to an external MIW-02 module - for more details, refer to section 8.13.

Figure 8.13 - Dimensions of the RS-232 serial communication module KCS-CFW08 and RJ(XC8) signal connector

8.9.1 Instructions for

KCS-CFW08 Insertion/Removal

(a) Insertion

- Use a screwdriver to unlock the communication module.
- Remove the module by pulling it on the lateral sides
 module as shown in figure above.
- Press it.

- Remove the cable from the XC5 connector.
(b) Removing

Figure 8.14-Insertion and removal of the serial communication module RS-232 KCS-CFW08
8.10 KSD-CFW08 The complete kit, that enables the connection of the CFW-08 to a PC via RS-232 contains:

- Serial communication module RS-232 (KCS-CFW08);
- 3m cable RJ-6 for the DB9;
- Software "SUPERDRIVE" for Windows 95/98, Windows NT Workstation V4.0 (or later operational system), that enables the CFW-08 programming, operating and monitoring.

To install the RS-232 communication kit on the PC, proceed as follows:

- Remove the parallel keypad (HMI-CFW08-P) from the inverter.
- Install the serial communication module RS-232 (KCS-CFW08) in the place of the keypad.
- Install the software "SUPERDRIVE" in the PC.
- Connect the inverter to the PC through the cable.
- Follow the instruction given by the "SUPERDRIVE".

This device must be used when the installation of the inverter on 35 mm rail, according to DIN EN 50.022, is desired
Only available for the models: $1.6-2.6-4.0-7.0 \mathrm{~A} / 200-240 \mathrm{~V}$ and
1.0-1.6-2.6-4.0A/380-480V

Figure 8.15 - Inverter with DIN rail kit (KMD-CFW-08-M1)
8.12 KFIX-CFW08-M1 KFIX-CFW08-M2

This kit must be used when a better access to the screw hole of the inverter is needed. Models that used this kit:
KFIX-CFW08-M1
1,6-2,6-4,0-7,0A/200-240V; 1,0-1,6-2,6-4,0A/380-480V

KFIX-CFW08-M2
7,3-10-16A/200-240V; 2,7-4,3-6,5-10A/380-480V

Dimensions (mm)					
KFIX-CFW08-M1	A	B	C	D	E
	50	75	8	180	190
KFIX-CFW08-M2	80	115	8	228	238

Figura 8.16 - Dimensions of the inverter with the kit (KFIX-CFW08-MX)

8.13 KN1-CFW08-M1
 KN1-CFW08-M2

This kit is used, when a NEMA 1/IP20 degree of protection is desired for the inverter or when for the inverter wiring metallic conduits are desired. Models that use this kit:
KN1-CFW08-M1:
1.6-2.6-4.0-7.0/220-240V; 1.0-1.6-2.6-4.0/380-480V

KN1-CFW08-M2:
7.3-10-16A/200-240V; 2.7-4.3-6.5-10A/380-480V

Models 13 and 16A/380-480V have Nema 1/IP20 degree of protection in the standard version.

(b) KN1-CFW08-M2

Figure 8.17 - Dimensions of the NEMA1/IP20 kits

(a) Inverters 1.6-2.6-4.0-7.0/220-240V;
1.0-1.6-2.6-4.0/380-480V with KN1-CFW08-M1

Figure 8.18 - External dimensions of the inverter with NEMA1/IP20 kit
8.14 MIW-02

External module for conversion from RS-232 to RS-485: it allows the connection of the CFW-08, when fitted with RS-232 serial module (KCSCFW08) to a standard RS-485 line.
So the inverter can participate in a multipoint line up to 1000 m without the use of transducers. For more details about this connection, see item 8.18.7 and the MIW-02 USER MANUAL. The communication protocols supported by this serial interface are detailed in items 8.18 WEG and 8.19 RTU-Modbus.

Figure 8.19 - Connection of the CFW-08 to a standard RS-485 communication network

8.15 RFIFILTER

The installation of frequency inverters requires some care in order to prevent electromagnetic interferences (EMI).
This electromagnetic interference may disturb the operation of the inverter itself or other devices, such as electronic sensors, PLCs, transducers, radio equipment, etc. installed in the proximity.
To avoid these troubles, follow the installation instructions contained in this Manual.
In this case, avoid the installation of electromagnetic noise generating circuits, such as power cables, motors, etc. near to signal or control cables.
Care should also be taken with the radiated interference, by shielding the cables and the circuits that tend to emit electromagnetic waves and can cause interference.
The electromagnetic interference can also be transmitted through power supply line. This type of interference is minimized in the most cases by capacitive filters which are already installed inside the CFW-08.
However, when inverters are installed in residential areas, the installation of additional filter may be required.
These filters may be installed internally (on some types) or externally.
As defined in standards, the Class B filter has more attenuation capacity than the Class A filter, thus being more suitable for residential areas.
Section 8.1 lists the available RFI filters with the respective inverter models. The inverters with internal Class A filters have the same external dimensions as the inverters without filter.
The external Class B filters must be installed between the power supply line and the inverter input, as shown in Figure 8.18 below.
Instructions for the RFI filter installation:

- Install the inverter and the filter on a metallic grounded plate as near to each other as possible and ensure a good electrical contact between the grounded plate and the inverter and filter frames.
\square For motor connection use a shielded cable or individual cables inside a grounded metallic conduit.

NOTE!
For installations that must meet the European standards refer to item 3.3.

Figure 8.20-Connection of the external RFI filter - Class B

8.16 LINE REACTOR

8.16.1 Application Criteria

Due to the input circuit characteristic, common to the most inverters available on the market, consisting of a diode rectifier and a capacitor bank, the input current (drained from the power supply line) of inverters is a non sinusoidal waveform and contains harmonics of the fundamental frequency (frequency of the power supply - 60 or 50 Hz).
These harmonic currents circulate through the power supply line and cause harmonic voltage drops which distort the power supply voltage of the inverter and other loads connected to this line. These harmonic currents and voltage distortions may increase the electrical losses in the installation, overheating the components (cables, transformers, capacitor banks, motors, etc.), as well as lowering the power factor.
The harmonic input currents depend on the impedance values that are present in the rectifier input/output circuit.
The installation of a line reactor reduces the harmonic content of the input current, providing the following advantages:
o increasing the input power factor;
0 reduction of the RMS input current;

- reduction of the power supply voltage distortion;
\square increasing the life of the DC link capacitors.
- reduction of the overvoltage transients that may occur in the power supply line.

In a general manner, the CFW-08 series inverters can be connected directly to the power supply line without line reactors. But in this case, ensure the following:
■ To ensure the inverter expected life, a minimum line impedance that introduces a voltage drop as shown in table 8.3, as a function of the motor load, is recommended. If the line impedance (transformers + wirings) is lower than these values, it is recommended to use line reactor(s).
\square When it is necessary to add a line reactor to the system, it is recommended to size it considering a 2 to 4% voltage drop (for nominal output current). This pratice is results in a compromise between motor voltage drop, power factor improvement and harmonic current distortion reduction.

This practice results in a compromise between motor voltage drop, power factor improvement and harmonic current distortion reduction.
\square Always add a line reactor, when capacitors for power factor correction are installed in the same line and near to the inverter.
\square Figure 8.19 shows the line reactor connection to the input.
\square Use the following equation to calculate the value of the line reactor necessary to obtain the desired percentage of the voltage drop:
where:

$$
\mathrm{L}=1592 \times \frac{\Delta \mathrm{V}}{\mathrm{f}} \times \frac{\mathrm{V}_{\mathrm{e}}}{\mathrm{I}_{\mathrm{S}, \text { nom }}}[\mu \mathrm{H}]
$$

- desired line voltage drop, in percentage (\%);
$\mathrm{V}_{\mathrm{e}} \quad$ - phase voltage at inverter input (line voltage), given in Volts (V);
- rated inverter output current;
- line frequency.

Inverter	Minimum Line Impedance		
	With rated load at the inverter output $\left(I_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}, \text { nom }}\right)$	With 80% of the rated load at the inverter output $\left(I_{\mathrm{S}}=0,8 \mathrm{I}_{\mathrm{s}, \text { nom }}\right)$	With 50% of the rated load at the inverter output $\left(I_{\mathrm{S}}=0,5 \mathrm{I}_{\mathrm{s}, \text { nom }}\right)$
1.6A / 220-240V	0.25\%	0.1\%	0.5\%
2.6A/220-240V	0.1\%	0.05\%	
4.0A / 220-240V	1.0\%	0.5\%	
7.0A / 220-240V	0.5\%	0.25\%	
7.3A / 220-240V	1.0\%	0.25\%	
10A / 220-240V	0.5\%	0.25\%	
16A / 220-240V	1.0\%	0.5\%	
1.0A / 380-480V	0.05\%	0.05\%	
1.6A / 380-480V	0.05\%	0.05\%	
2.6A / 380-480V	0.1\%	0.05\%	
2.7A / 380-480V	0.25\%	0.1\%	
4.0A / 380-480V	1.0\%	0.5\%	
4.3A / 380-480V	1.0\%	0.5\%	
$6.5 \mathrm{~A} / 380-480 \mathrm{~V}$	0.5\%	0.25\%	
10A / 380-480V	0.5\%	0.25\%	
13A / 380-480V	0.5\%	0.25\%	
16A / 380-480V	1.0\%	0.5\%	

Note: These values ensure a life of 20,000 hour for the DC link capacitors, i.e., they can be operated during 5 years with operation of 12 hours per day.

Table 8.3-Minimum network impedance for several load conditions.

(a) Single-phase power supply models

(b) Three-phase power supply models

Figure 8.21 - Power connection with line reactor at the input
As an alternative criterion, we recommend to add a line reactor always the transformer that supplies the inverter has rated output higher than indicated in table below.

Inverter Model	Transformer Apparent Power [kVA]
1.6 A and $2.6 \mathrm{~A} / 200-240 \mathrm{~V}$	$30 \times$ rated inverter apparent power [kVA]
$4 \mathrm{~A} / 200-240 \mathrm{~V}$	$6 \times$ rated inverter apparent power [kVA]
7 A and $7.3 \mathrm{~A} / 200-240 \mathrm{~V}$	$10 \times$ rated inverter apparent power [kVA]
$10 \mathrm{~A} / 200-240 \mathrm{~V}$	$7.5 \times$ rated inverter apparent power [kVA]
$16 \mathrm{~A} / 200-240 \mathrm{~V}$	$4 \times$ rated inverter apparent power [kVA]
$1 \mathrm{~A} ; 1.6 \mathrm{~A}$ and $2.6 \mathrm{~A} / 380-480 \mathrm{~V}$	$30 \times$ rated inverter apparent power [kVA]
4.0 and $4.3 \mathrm{~A} / 380-480 \mathrm{~V}$	$6 \times$ rated inverter apparent power [kVA]
$2.7 \mathrm{~A} / 380-480 \mathrm{~A}$	$15 \times$ rated inverter apparent power [kVA]
$6.5 ; 10 \mathrm{~A}$ and $13 \mathrm{~A} / 380-480$	$7.5 \times$ rated inverter apparent power [kVA]
$16 \mathrm{~A} / 380-480$	$4 \times$ rated inverter apparent power [kVA]

Note: The value for the rated apparent power can be obtained in section 9.1 of this manual.

Table 8.4 - Alternative criteria for use of line reactor -
Maximum values of the transformer power

8.16 LOAD REACTOR

The use of a three-phase load reactor, with an approximate 2% voltage drop, adds an inductance at the inverter PWM output to the motor. This decreases the $\mathrm{dV} / \mathrm{dt}$ (voltage rising rate) of the pulses generated at the inverter output. This practice reduces the voltage spikes on the motor windings and the leakage currents that may be generated when long cables between inverter and motor (as a function of the "transmission line" effect) are used.
There are many factors that influence the peak level (Vp) and the rise time (tr) of voltage spikes: cable type, cable length, motor size, switching frequency and so on.
WEG recommends using a load reactor when the supply voltage is higher than 500V, though this is not always required.
WEG, as a specialist in both motors and inverters (VSDs) is able to provide an integrated solution.
The load reactor value is calculated in the same way as the line reactor (see item 8.15.1).
If the cables between inverter and motor are longer that 300 ft (100 m), the cable capacitance to ground may cause nuisance overcurrent (E00) trips. In this case it is also recommended to use a load reactor.

Figure 8.22 - Load Reactor Connection

8.18 DYNAMIC BRAKING

8.18.1 Resistor Sizing

The dynamic braking is used where short deceleration times are required or where high inertia is present.
For the correct sizing of the braking resistor, application data such as, deceleration time, load inertia, braking duty cycle must be considered. In any case, the rms current capacity and the maximum peak current must be considered.
The maximum peak current defines the minimum permitted ohmic value for the braking resistor. Refer to table 8.4.
The DC link voltage level for the actuation of the dynamic braking is as follows:

Inverter supplied with 200...240V:375Vcc
Inverters supplied with 380...480V: 750Vcc

The braking torque, that can be obtained through the frequency inverter, without using the dynamic braking module, varies from 10 to 35% of the rated motor torque. During the deceleration process, the kinetic energy of the load is regenerated into the inverter DC link. This energy loads up the capacitors by increasing the DC link voltage. When this energy is not fully dissipated, it may generate a DC link overvoltage trip (E01) and disabling the inverter.
To obtain higher braking torques, the use of dynamic braking is recommended where the excess of the regenerated energy is dissipated in a resistor mounted externally to the inverter. The braking resistor is defined according to the deceleration time, load inertia and resistive torque. In most cases, a resistor with an ohmic value as indicated on the table below and a power rating of 20% of the driven motor can be used.
Use wire type or tape type resistors with suitable insulation to withstand the instantaneous current peaks.
For critical applications with very short braking times, high inertia loads (ex.: centrifuges) or with very short and frequent duty cycles, contact WEG to define the most suitable resistor.

Inverter Model	Maximum Braking Current	$\mathrm{P}_{\max }$ (Maximum Resistor Power)	RMS Braking Current (*1)	$\mathrm{P}_{\text {rated }}$ (Rated Resistor Power)	Recommended Resistor	Recommended Wiring
1.6A / 200-240V	Braking not available					
2.6A/200-240V						
$4.0 \mathrm{~A} / 200-240 \mathrm{~V}$						
7.0A/200-240V						
7.3A/200-240V	10 A	3.9 kW	5A	0.98 kW	39Ω	$2.5 \mathrm{~mm}^{2} / 14$ AWG
10A / 200-240V	15 A	6.1 kW	7A	1.3 kW	27Ω	$2.5 \mathrm{~mm}^{2} / 14$ AWG
16A / 200-240V	20 A	8.8 kW	10 A	2.2 kW	22Ω	$4 \mathrm{~mm}^{2} / 12$ AWG
1.0A/380-480V	Braking not available					
1.6A/380-480V						
$2.6 \mathrm{~A} / 380-480 \mathrm{~V}$						
2.7A / 380-480V	6 A	4.6 kW	3.5 A	1.6 kW	127Ω	$1.5 \mathrm{~mm}^{2} / 16$ AWG
4.0A/380-480V	Braking not available					
$4.3 \mathrm{~A} / 380-480 \mathrm{~V}$	6 A	4.6 kW	3.5A	1.6 kW	127Ω	$1.5 \mathrm{~mm}^{2} / 16$ AWG
6.5A/380-480V	8A	6.4 kW	4A	1.6 kW	100Ω	$2.5 \mathrm{~mm}^{2} / 14$ AWG
10A / 380-480V	16 A	12 kW	10 A	4.7 kW	47Ω	$4 \mathrm{~mm}^{2} / 12$ AWG
13A / 380-480V	24 A	19 kW	14 A	6.5 kW	33Ω	$6 \mathrm{~mm}^{2} / 10$ AWG
16A / 380-480V	24 A	19 kW	14 A	6.5 kW	33Ω	$6 \mathrm{~mm}^{2} / 10$ AWG

Table 8.5-Recommended Braking Resistors
(*1) The rms braking current can be determined by:

$$
I_{\text {rms }}=I_{\max } \cdot \sqrt{\frac{t_{b r}^{[\text {min }]}}{5}}
$$

where $t_{b r}$ corresponds to the sum of the braking times during the most severe 5 minute cycle.

8.18.2 Installation

T Connect the braking resistor between the +UD and BR power terminals (refer to section 3.2.2).
\square Make this connection with a twisted pair. Run this cable separately from any signal or control wire. Size the cable cross section according to the application, by considering the maximum and the rms current.
\square If the braking resistor is installed inside the inverter panel, consider the heat dissipated by the resistor when defining the panel ventilation.

DANGER!

The internal inverter braking circuit and the braking resistor can be damaged when not correctly sized or when the line voltage exceeds the maximum allowed value
In this case, the only guaranteed method to avoid burning the braking resistor and eliminate risk of fire is the installation of a thermal overload relay in series connected with the resistor and/or the installation of a thermostat on the resistor body, wiring it in such a way that it disconnects the inverter power supply in case of overheating, as shown in figure 8.22 below:

Figure 8.23 - Braking resistor connection
(only for models $7.3-10-16 \mathrm{~A} / 200-240 \mathrm{~V}$ e 2.7-4.3-6.5-10-13-16/380-480V)

8.19 SERIAL
 COMMUNICATION

8.19.1 Introduction

The basic objective of the serial communication is the physical connection of the inverters in an equipment network configured as follows:

The inverters have a control software for data transmission/reception through serial interface, thus facilitating the reception of data that have been sent by the master and the transmission of the data requested by the master.

This software supports WEG protocol and nine different Modbus-RTU modes, that can be selected via parameter P312. The subjects broached in this Section refers to WEG protocol. For more details about the ModbusRTU, see item 8.19.

The transfer rate is 9600 bits/s, following an exchange protocol of question/ answer typeby using ASCII characters.
The master is able to realize the following operations related to each inverter:

- IDENTIFICATION
n network address;
T inverter;
■ software version.
- CONTROL
- general enabling/disabling;
- enabling/disabling by ramp;
® direction of rotation;
■ frequency/speed reference;
■ local/remote;
T JOG;
■ error and fault RESET.
- STATUS RECOGNITION

园 ready;
T Sub;
run;
T local/remote;
■ error;
■ JOG;
目 direction of rotation.

- PARAMETER READING
- CHANGE OF PARAMETERS

Typical examples of network use:
7 PC (master) for the parametrization of one or several inverters at the same time;
\square SDCD monitoring inverter variables;
\square PLC controlling the operation of one or more inverters in a industrial process.
8.19.2 Interfaces Description
8.19.2.1 RS-485

The physical connection between the inverters and the master is performed according to one of the standards below:
a. RS-232 (point-to-point up to 10 m);
b. RS-485 (multipoint, galavanic isolation, up to 1000 m);

This interface permits the linkage of up to 30 inverters to a master (PC, PLC, etc.), attributing and setting for each inverter an address (1 to 30). In addition to these 30 addresses, there are two addresses to perform special tasks:
Address 0 : any inverter in the network is inquired, independently of its address. Only one inverter can be connected to the network (point-topoint) in order to prevent short-circuits in the line interface.

7 Address 31: a control can be transmitted to all inverters in the network simultaneously, without acceptance recognition.
■ List of addresses and corresponding ASCII characters.

ADDRESS (P308)	ASCII		
	CHAR	DEC	HEX
0	@	64	40
1	A	65	41
2	B	66	42
3	C	67	43
4	D	68	44
5	E	69	45
6	F	70	46
7	G	71	47
8	H	72	48
9	I	73	49
10	J	74	4A
11	K	75	4B
12	L	76	4C
13	M	77	4D
14	N	78	4E
15	0	79	4F
16	P	80	50
17	Q	81	51
18	R	82	52
19	S	83	53
20	T	84	54
21	U	85	55
22	V	86	56
23	W	87	54
24	X	88	58
25	Y	89	59
26	Z	90	5A
27]	91	5B
28	1	92	5 C
29	[93	5D
30	\wedge	94	5E
31	-	95	5F

Other ASCII characters used by the protocol

ASCII		
CODE	DEC	HEX
0	48	30
1	49	31
2	50	32
3	51	33
4	52	34
5	53	35
6	54	36
7	55	37
8	56	38
9	57	39
$=$	61	$3 D$
STX	02	02
ETX	03	03
EOT	04	04
ENQ	05	05
ACK	06	06
NAK	21	15

The connection between the network participants is performed through a pair of wires. The signal levels are according to the EIA RS-485 STANDARD with differential receivers and transmitters. You must use the serial communication module KCS-CFW-08 (refer to section 8.9) connected to the external module MIW-02 (refer to section 8.13 and/or to MIW-02 User Manual Cod. 0899.4435).
When the master is fitted only with a RS-232 serial interface, you must apply a level conversion module from RS-232 to RS-485.
8.19.2.2 RS-232

8.19.3 Definitions

8.19.3.1 Used Terms

8.19.3.2 Parameter/Variables Resolution

In this case we have the connection of a master to an inverter (point-topoint). The data can be exchanged in a bi-directional way, but not simultaneously (HALF DUPLEX).
The logical levels meet the EIA RS-232C STANDARD, that specifies the use of balanced signals. In this case one wire is used for the transmission (TX), one wire for the reception (RX) and one wire for the return ($0 V$). This configuration is a three wire economy model.
You must use the RS-232 (KCS-CFW08) module in the inverter (refer to Section 8.9).

The tems of this Section describe the protocol used in the serial communication.
\square Parameters: are those existing in the inverters whose visualization or alteration is possible through the keypad (HMI) interface.
\square Variables: are values that have specific inverter functions and that can be read and, in some cases, modified by the master.
\rrbracket Basic variables: are those that can be accessed only through the serial interface.

SCHEMATIC DIAGRAM:

INVERTER	
BASIC VARIABLES	\longrightarrow
PARAMETERS	\longrightarrow

MASTER

The variables and the parameters have 16 bits format, i. e., from - 32767 to +32768 for signed variables or from 0 to 65535 for unsigned variables. All variables are considered as signed variables, except those related to time (time, period, frequency, ...)
In addition, the maximum and minimum values must consider the parameter range limits.
The below shows the main variables and their respective resolutions.

Parameter	Unit	Resolution
Frequency	H	$0.01 \mathrm{~Hz} / \mathrm{unit}$
Current (AC or DC)	A	$0.01 \mathrm{~A} / \mathrm{unit}$
Voltage (AC or DC)	V	$1 \mathrm{~V} /$ unit
Time	s	$0.1 \mathrm{~s} /$ unit
Percentage	$\%$	$0.01 \% / \mathrm{unit}$
Gain	-	$0.01 /$ unit
RPM	RPM	1 RPM/unit

8.19.3.3 Character Format

■ 1 start bit;
团 8 information bits [they codify text characters and transmission characters, removed from the 7 bits code, according to ISO 646 and complemented for the even parity (eighth bit)];
■ 1 stop bit.
After the start bit, follows the less significant bit:

8.19.3.4 Protocol

START	B1	B2	B3	B4	B5	B6	B7	B8	STOP
Start bit			8 bits of information $\longrightarrow \left\lvert\, \begin{gathered}\text { Stop } \\ \text { bit }\end{gathered}\right.$						

The transmission protocol meets the Standard ISO 1745 for the transmission in code.
Only text character sequences without headers are used. The error/ fault monitoring is made through transmission related to the parity of the individual 7 bit characters, according to ISO 646. The parity monitoring is made according to DIN 66219 (even parity). The master uses two types of messages:
\square READING MESSAGE: for inquiring of the inverter variable content;
\square WRITING MESSAGE: to change the inveter variable content or to send comands to the inverters.

NOTE:

No transmission between two inverters is possible.
The master has the bus access control.

This message allows the master receive from the inverter the content that corresponding to the inquiry code. In the answer message, the inverter transmits the data requested by the master and it finishes the transmission with EOT.

1) Master:

2) Inverter:

3) Master:

Format of the reading message:
EOT: control character of End Of Transmission;
ADR: inverter address (ASCII@, A, B, C, ...) (ADdRess);
CODE: address of the 5-digit variable coded in ASCII;
ENQ: control character ENQuiry (enquiry);
Format of the inverter answer message:
ADR: 1 character - inverter address;
STX: control character - Start of TeXt;
TEXT: consists in:
\square CODE: address of the variable;
■ " = ": separation character;
■ VAL: 4 digits value HEXADECIMAL;

ETX: control character - End of Text;
BCC: CheCksum Byte - EXCLUSIVE OR of all bytes between STX (excluded) and ETX (included).
NOTE:
In some cases there can be an inverter answer with:

ADR	NAK	refer to Item 8.18.3.5

This message sends data to the inverter variables. The inverter will answer
by indicating if the data have been accepted or not.

1) Master:

2) Inverter:

$$
\begin{array}{|l|l|l|l|}
\hline \text { ADR } & \text { NAK } & \text { or } & \text { ADR } \\
\hline
\end{array}
$$

3) Master:

8.19.3.5 Execution and Message Test

Format of the writing message:
EOT: control character of the End Of Transmission;
ADR: inverter address;
STX: control character of the Start of TeXt;
TEXT: consists in:
© CODE: variable address;
■ " = ": separation character;
\square VAL: 4 HEXADECIMAL digit values;
ETX: control character of the End of TeXt;
BCC: CheCksum Byte - EXCLUSIVE OR of all the bytes between STX (excluded) and ETX (included).

Format of the inverter answer message:

Acceptance:

© ADR: inverter address.
\square ACK: ACKnowledge control character.
Without Acceptance:
\square ADR: inverter address.
T NAK: Not AcKnowledge control character.
This means that the data were not accepted and the addressed variable continues with its old value.

The inverter and the master test the message syntax.
The answers for the respective verified conditions are defined as follows:

Reading Message:

\square no answer: with wronG message structure, control characters received incorrectly or wrong inverter address;
\square NAK: CODE corresponding to a non existing variable or there is only a writing variable;
\square TEXT: with valid messages.

8.19.3.6 Message Sequence

8.19.3.7 Variable Code

CODE

8.19.4 Message Examples

Writing Message:

\square no answer: with wrong message structure, control characters received incorrectly or wrong inverter address;
\square NAK: CODE corresponding to a non existing variable, wrong BCC (checksum byte), only reading variable, VAL out of the allowed range for the respective variable, operation parameter out of the alteration mode;
\square ACK: with valid message;
The master should maintain, between two variable transmissions to the same inverter, a waiting time that is compatible with the used inverter.

The messages are processed in the inverter in determined intervals. Therefore, a pause larger than the sum of the times $T_{\text {proc }}+T_{\text {di }}+T_{\text {txi }}$ should be ensured between two messages addressed to the same inverter (refer to section 8.18.6.).

The field designated with CODE determines the parameter address and the basic variables formed by 5 digits (ASCII characters) as follows:

1) Master:

2) Inverter:
3) Master:
EOT
\square Reading of the output current from the inverter 10
(supposing the the same was at 7.8A at the moment of the enquiry).
4) Master:

5) Inverter:

6) Master:
\square
8.19.5 Variables and Errors of the Serial Communication

8.19.5.1 Basic Variables

8.19.5.1.1 V00 (code 00700)
8.19.5.1.2 V02 (code 00702)

Indication of the inverter model (reading variable).
The reading of this variable permits the identification of the inverter type. For the CFW-08 this values is 7, as defined in 8.21.3.7.

Indication of the inverter status (reading variable)
\square Logical status (byte-high)
回 Error code (byte-low)
where:

Logical Status:

EL15	EL14	EL13	EL12	EL11	EL10	EL9	EL8

\(\left.$$
\begin{array}{ll}\text { EL8: } & \begin{array}{l}0=\text { ramp enabling (start/stop) inactive } \\
1=\text { ramp enabling }\end{array}
$$

EL9: \& 0=general enabling inactive

1=general enabling active\end{array}\right]\)| Inverter |
| ---: |
| enabled |

Error Code: hexadecimal error number

Ex.: EOO $\rightarrow 00 \mathrm{H}$
$\mathrm{E} 01 \rightarrow 01 \mathrm{H}$
$\mathrm{E} 10 \rightarrow \mathrm{OAH}$
8.19.5.1.3 V03 (code 00703)

Selection of the Logical Control

Writing variable, whose bits have the following meaning:
BYTE HIGH : desired action mask. It order to enable the action, the corresponding bit should be set to 1 .

CL15	CL14	CL13	CL12	CL11	CL10	CL9	CL8
MSB							

CL8: 1 = enabling ramp (start/stop)

- CL9:1 = general enabling
- CL10: 1 = forward/reverse rotation
- CL11:1 = JOG
- CL12: 1 = local/remote
- CL13: not used
\square CL14: not used
■ CL15: 1 = inverter "RESET"
BYTE LOW: logical level of the desired action.

CL7	CL6	CL5	CL4	CL3	CL2	CL1	CL0
MSB							
LSB							

\square CLO: 1 = enabling (run)
$0=$ disabling by ramp (stop)
\square CL1: $1=$ enabling
$0=$ general disabling (stops by inertia)
\square CL2: 1 =forward
$0=$ reverse
■ CL3: $1=J O G$ active
$0=\mathrm{JOG}$ inactive
\square CL4: $1=$ remote
0 = local

	- CL5: not used (CL6: not used (CL7: the transition in this bit from 0 to 1 causes the inverter "RESE when any error condition is present.									
		Note: Disabling To disable while the e If $C L 1=0$ a If $\mathrm{CLO}=0$ a	via DIx the inv externa and CL9 and CL8	x has pri verter via al disab 9=1, it $8=1$, th	priority via ser bling (will oc e inve	ver thi al interf xample cur gen ter will	is disab face, se e, via DI neral di I be dis	ling. CLO= I) mus sabling abled v	CL1 $=$ t be in g. via ram	CL8=CL9= active. p.
8.19.5.1.4 V04 (code 00704)	Frequency reference is given by the serial interface (reading/writi variable). Permite enviar a referência de frequência (em Hz) para o inve sor, desde que P221=5 para o modo local e P222=5 para o modo remoto. A resolução desta variável é mostrada no item 8.18.3.2.									
8.19.5.1.5 V05 (code 00705)	Enabled controls by the serial interface (reading variable)									
		CHSH 0	CHSL	$\left\lvert\, \begin{gathered}\text { CHSL } \\ 6\end{gathered}\right.$	CHS	CHSL	CHSL	$\begin{array}{c\|} \hline \text { CHSL } \\ 2 \\ \hline \end{array}$	CHSL	$\begin{gathered} \hline \text { CHSL } \\ 0 \\ \hline \end{gathered}$
	MSB									LSB
	- CHSLO: 1 - serial local reference									
	\square CHSL1:1-serial local forward/reverse selection									
	■ CHSL2: 1 - serial local On/Off selection									
	¢ CHSL3: 1 - serial local JOG									
	\square CHSL4:1-serial remote reference									
	\square CHSL5: 1 - serial remote forward/reverse selection									
	\square CHSL6: 1 - serial remote On/Off selection									
	\square CHSL7: 1 - serial remote JOG selection									
	CHSH0: 1 - serial local/remote selection.									

8.19.5.1.6 Message Examples with Basic Variables

T Inverter enabling (provided P229=2 for LOC or P230=2 for REM)

1) Master:

2) Inverter:

G	ACK

3) Master:

7 Changing inverter from forward to reverse (provided P229=2 for LOC or $\mathrm{P} 230=2$ for REM) If P231 = 2

1) Master:

2) Inverter:

G	ACK

3) Master:

EOT

J JOG enabling (provided P229=2 for LOC or P230=2 for REM)

1) Master:

addr. 7
2) Inverter:

G	ACK

3) Master:

EOT

■ Error reset

1) Master:

2) Inverter:

3) Master:

EOT
8.19.5.2 Parameters Related to the Serial Communication

Parameter Number	Parameter Description
P220	Local/Remote selection
P221	Local reference selection
P222	Remote reference selection
P229	Local command selection
P230	Remote command selection
P231	Forward/Reverse selection
P308	Inverter address on the Serial Communication Network (value range from 1 to 30)
P312	Serial Interface Protocol
P313	Serial Interface Watchdog Action
P314	Serial Interface Watchdog Timeout

For further information about the parameter above, refer to Chapter 6 Detailed Parameter Description.

8.19.5.3 Errors Related to the Serial Communication

They act as follows:
\square they do not disable the inverter;
\square they do not disable the fault relay;
they inform in the word the logical status (V02).

Fault types:

© E22: longitudinal parity fault (BCC);
\square E24: parametrization fault (when some of the situations occurs as indicated in table 5.1 (incompatibility between parameters) or when there is a parameter change attempt that can not be changed with running motor).
■ E25: variable or parameter not existing;
\square E26: expected values out of allowed limits;
\square E27: writing attempt in a read only variable or logical command disabled;
E 29: serial interface watchdog timeout error.

Note:

If a parity fault is detected during inverter data reception, the message will be ignored. The same happens when syntax errors occur.
Ex.:
\square Code values different from the numbers $0, \ldots, 9$;
\square Separation character different from " = ", etc.

8.19.6 Time for Read/Write of Messages

8.19.7 Physical

 Connection RS-232 and RS-485

Figure 8.24-CFW-08 network connection through RS-485 serial interface

Notes:

\square LINE TERMINATION: connect the termination resistors at the ends of the line.
U LINE TERMINATION: include line termination (120 $)$ at the ends, and only at the line ends.
\square GROUNDING OF THE CABLE SHIELD: connect the shielding to the equipment frame (suitable grounding);
\square RECOMMENDED CABLE: for balanced shielding. Ex.: AFS series, manufacturer KMP.

Figure below shows the pin position of the XC8 connector of the KCS-CFW08-S module.

Figure 8.25 - Description of the XC8 (RJ-6) connector

Note:

The wiring of the RS-232 must be laid separately from the power cables and the control wiring in 110/220V.

NOTE!

You can not use RS-232 and RS-485 simultaneously.

8.20 MODBUS-RTU

8.20.1 Introduction to Modbus-RTU Protocol

8.20.1.1 Transmission Modes

Modbus protocol has been already developed 1979 firstly. Currently it is a wide diffused open protocol, used by several manufacturers in different equipment. The Modbus-RTU communication of the do CFW-08 has been developed by considering two documents:

1. MODBUS Protocol Reference Guide Rev. J, MODICON, June 1996.
2. MODBUS Application Protocol Specification, MODBUS.ORG, may 8th 2002.

In these documents are defined the format of the messages used by these elements that are part of the Modbus network, the services (or functions) that can be made available via network, and also how these elements exchange the data on the network.

Two transmission modes are defined in the protocol definition: ASCII and RTU. The transmission modes define the form how the message bytes are transmitted. It is not permitted to use the two transmission modes on the same network.
In the RTU mode each transmitted word has one start bit, eight data bits, 1 parity bit (optional) and 1 stop bit (2 stop bits, if no parity bit is used). Thus the bit sequence for the transmission of 1 byte is as follows:

Start	B0	B1	B2	B3	B4	B5	B6	B7	Parity or Stop	Stop

In the RTU mode each transmitted word has 1 start bit, eight data bits, 1 parity bit (optional) and 1 stop bit (2 stop bits, if parity bit is not used). Thus the bit sequence for the transmission is as follows:

8.20.1.2 Message Structure

In RTU ModeThe Modbus RTU network operates in Master-Slave system and it can consist of up to 247 slaves but only one Master. The master always initiates the communication with a question to a slave and the slave answers the question. Both messages (question and answer) have the same structure: Address, Function Code, and CRC. Depending on what is being requested, only the data field has variable length.

Figure 8.26 - Message Structure

8.20.1.2.1 Address

8.20.1.2.2 Function Code

8.20.1.2.3 Data Field
8.20.1.2.4 CRC

The master initiates the communication by sending one byte with the address of the slave to which the message is addressed. The slave with the right slave address initiates the message with its own address. The master can also send a message destined to address 0 (zero), which means that the message is destined to all network slaves (broadcast). In this case no slave will answer to the master.

This field contains an only byte, where the master specifies the type of service or the function requested to the slave (read, write, etc.). According to the protocol, each function is used to access a specific data type. In the CFW-08 all data are available as holding type registers (referenced from the address 40000 or' $4 x^{\prime}$). Besides these registers, the inverter status (enabled/disabled, with error/no error and the command for the inverter (run/stop, run CW/CCW, etc.) can be also accessed through the coils read/write functions or the internal bits (referenced from the address 00000 or ' $0 x$ ' on).

This field has variable length. The format and the content of this field depend on the used function and transmitted values. This field and the respective functions are described in item 8.20.3.

The last part of the message is the field for checking the transmission errors. The used method is the CRC-16 (Cycling Redundancy Check). This field is formed by two bytes, where the least significant byte (CRC-) is transmitted first and only then the most significant byte is transmitted (CRC+).
CRC calculation is started by loading a 16-bit variable (mentioned from now on as CRC variable) with FFFFh value. Then following steps are executed with the following routine:

1. The first message byte (only the data bits - the start bit, parity bit and stop bit are not used) is submitted to the XOR logic (OR exclusive) with the 8 least significant bits of the CRC variable, returning the result to the CRC variable,
2. Then the CRC variable is displaced one position to the right, in the direction of the least significant bit and the position of the most significant bit is filled out with zero 0 (zero).
3. After this displacement, the flag bit (bit that has been displaced out the CRC variable) is analyzed, by considering the following:
\square If the bit value is 0 (zero), no change is made.
\square If the bit value is 1 , the CRC variable content is submitted to XOR logic with a constant A001h value and the value is returned to the CRC variable.
4. Repeat steps 2 and 3 until the eight displacements have been realized.
5. Repeat the steps 1 to 4 , by using the next byte message until the whole message have been processed. The end content of the CRC variable is the value of the CRC field that is transmitted at the end of the message. The least significant part is transmitted first (CRC), only then the most significant part (CRC+) is transmitted.

8.20.1.2.5 Times between Messages

\square The interface is used for the point-to-point connection (between a single slave and the master).
\square Max. distance: 10 meters.
\square Signal levels according to EIA STANDARD RS-232C.
\square Three wires: transmission (TX), reception (RX) and return (0 V).
\square The RS-232 module (KCS-CFW08) must be used (see item 8.9).
8.20.2.1.2 RS-485
8.20.2.2 Inverter

Configuration in the
Modbus-RTU
Network
8.20.2.2.1 Inverter Address in the Network

8.20.2.2.2 Transmission Rate and Parity

8.20.2.3 Access to the Inverter Data

\square This interface is used for multipoint connection (several slaves and the master).
\square Max. distance: 1000 meters (use of shielded cables).
\square Signal levels according to EIA STANDARD RS-485.
\square The RS-232 module (KCS-CFW08) must be used (see item 8.9), connected to the external module MIW-02, to convert from RS-232 to RS-485 (see item 8.14).

Note: for connection, see 8.19.7
To ensure a correct communication in the network, you must configure the inverter address in the network as well as the transfer rate and the existing parity type, besides the correct physical connection.

■ The inverter address is defined through the parameter P308.
\square If the serial communication type (P312) has been configured to ModbusRTU, you may select the addresses from 1 to 247.
\square Each slave shall have a different address.
\square The master does not have address.
\square The slave address must be known, even when connection is made point-to-point.

- Both configurations are defined by parameter P312.
\square Baud rates: 9600,19200 or $38400 \mathrm{kbits} / \mathrm{sec}$.
- Parity: None, odd parity, even parity.
\square All slaves and even the network master must use the same baud rate and parity.

All parameters and available basic variables for the CFW-08 can be accessed through the network:
\square Parameters: are those set in the inverter and that can be displayed and changed through the HMI (Human-Machine Interface) (see item 1 - Parameters).
\square Basic Variables: are the internal inverter variables that can be accessed only through serial interface. For instance, trough these basic variables you can change the speed reference, read the inverter status, enable or disable the inverter, etc. (see item 8.19.5.1 - Basic Variables).
\square Register: nomenclature used to represent both parameters and basic variables during data transfer.
0 Internal Bits: bits that are accessed only through the serial interface and that are used for inverter status controlling and monitoring.
Item 8.19.3.2 defines the resolution of the parameters and variables transmitted via serial interface.

8.20.2.3.1 Available Functions and Response Times

8.20.2.3.2 Data Addressing and Offset

In the Modbus RTU protocol specification is defined the functions used for accessing different types of registers described in the specification. In the CFW-08 both parameters and basic variables are defined as being holding type registers (referenced as 4 x). In addition to these registers, it is also possible to access the internal controlling and monitoring bits directly (referenced as $0 x$).
Following services (or functions) are available in the CFW-08 frequency inverter for accessing these registers:
\square Read Coils
Description: reading of internal register blocks or coils.
Function code: 01.
Broadcast: not supported
Response time: 10 to 20 ms .
\square Read Holding Registers
Description: reading of register blocks of holding type.
Function code: 03.
Broadcast: not supported
Response time: 10 to 20 ms .
\square Write Single Coil
Description: writing in a single internal bit or coil.
Function code: 05.
Broadcast: supported.
Response time: 10 to 20 ms .
■ Write Single Register
Description: writing in a single register of holding type.
Function code: 06.
Broadcast: supported
Response time: 10 to 50 ms .
■ Write Multiple Coils
Description: writing in internal bit blocks or coils.
Function code: 15.
Broadcast: supported
Response time: 10 to 20 ms .
\square Write Multiple Registers
Description: writing in register blocks of holding type.
Function code: 16.
Broadcast: supported
Response time: 10 to 50 ms for each written register.
\square Read Device Identification
Description: Identification of the inverter model.
Function code: 43.
Broadcast: not supported.
Response time: 10 to 20 ms .
Note: The Modbus RTU network slaves are addressed from 1 to 247. Master uses address 0 to send messages that are common to all slaves (broadcast)

The CFW-08 data addressing is realized with an offset equal to zero that means that the address number is equal to the register number. The parameters are available from address 0 (zero) on, whilst the basic variables are available from address 5000 on. In same way, the status bits are made available from address 0 (zero) on and the control bits are made available from address 100 on.
Table below shows the addressing of bits, parameters and basic variables:

Parameters		
Parameter Number	Endereço Modbus	
	Decimal	Hexadecimal
P000	0	0000 h
P001	1	0001 h
\vdots	\vdots	\vdots
P100	100	0064 h
$:$	\vdots	\vdots

Basic Variables		
Number of the Basic Variable	Decimal	Hexadecimal
V00	5000	1388 h
V01	5001	1389 h
\vdots	\vdots	\vdots
V05	5005	138 Dh

Status Bits		
Bit Number	Modbus Address	
	Decimal	Hexadecimal
Bit 0	00	00 h
Bit 1	01	01 h
\vdots	\vdots	\vdots
Bit 7	07	07 h

Commands Bits		
Bit Number	Modbus Address	
	100	Hexadecimal
Bit 101	101	64 h
\vdots	\vdots	65 h
Bit 107	107	\vdots

Note: All registers (parameters and basic variables) are considered as holding type registers, referenced from 40000 or $4 x$, whilst the bits are referenced from 0000 or $0 x$.
The status bits have the same functions of the bits 8 to 15 of the logic status (basic variable 2). These bits are available only for read, thus any attempt to write command returns error status to the master.

Status Bits	
Bit Number	Function
Bit 0	$0=$ Ramp enabling inactive $1=$ Ramp enabling active
Bit 1	$0=$ General enabling inactive $1=$ General enabling active
	$0=$ Counter-clockwise direction of rotation $1=$ Clockwise direction of rotation

Status Bits	
Bit Number	\quad Function
Bit 3	$0=$ JOG inactive $1=$ JOG active
Bit 4	$0=$ Local Mode $1=$ Remote Mode
Bit 5	$0=$ No undervoltage $1=$ With undervoltage
Bit 6	Not used
Bit 7	$0=$ No fault $1=$ With fault

The command bits are available to read and write and they have the same function of the logic command bits 0 to 7 (basic variable 3), however no requiring the use of the mask. The basic variable 3 write influences the status of these bits.

	Command Bits
Bit Number	Function
Bit 100	$0=$ Ramp disable (stops) $1=$ Ramp enable (runs)
Bit 101	$0=$ General disable $1=$ General enable.
Bit 102	$0=$ Counter-clockwise direction of rotation $1=$ Clockwise direction of rotation
Bit 103	$0=$ JOG disable $1=$ JOG enable
Bit 104	$0=$ Goes to local mode $1=$ Goes to remote mode
Bit 105	Not used
Bit 106	Not used
Bit 107	$0=$ It does not reset inverter $1=$ It resets inverter

8.20.3 Detailed Function Description

This section describes in details the functions that are available in the CFW-08 for the Modbus RTU communication. Please note the following during the message preparation:

凹 Values are always transmitted as hexadecimal values.
\square The address of one data, the data number and the value of the registers are always represented through 16 bits. Thus these fields are transmitted by using two bytes (high and low). To access the bits, and the form to represent one bit depend on the used function.
凹 The messages, both for enquiry and response, cannot be longer than 128 bytes.
\square The resolution of each parameter or basic variable is as described in item 8.19.3.2.
8.20.3.1 Function 01 Read Coils

It reads the content of an internal group of bits that must compulsorily in a numerical sequence. This function has the following structure for the read and response messages (the values are always hexadecimal, and each filed represents one byte):

Query (Master)	Response (Slave)
Slave address	Slave address
Function	Function
Initial bit address (byte high)	Byte Count Field (number of data bytes)
Initial bit address (byte low)	Byte 1
Number of bits (byte high)	Byte 2
Number of bits (byte low)	Byte 3
CRC-	etc...
CRC +	CRC-
	CRC+

Each response bit is placed at a position of the data bytes sent by the slave. The first byte, from the bits 0 to 7 , receives the first 8 bits from the initial address indicated by the master. The other bytes (if the number of the read bits is higher than 8) remain in the same sequence. If the number of the read bits is not a multiple of 8 , the remaining bits of the last byte should be filled out with 0 (zero).
\square Example: reading of the status bits for general enable (bit 1) and direction of rotation (bit 2) of then CFW-08 at the address 1:

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	01 h	Slave address	01 h
Function	01 h	Function	01 h
Initial bit address (byte high)	00 h	Byte Count	01 h
Initial bit address (byte low)	01 h	Status of the bits 1 and 2	02 h
Number of bits (byte high)	00 h	CRC-	D0h
Number of bits (byte low)	02 h	CRC +	49 h
CRC-	ECh		
CRC+	$0 B h$		

As the number of read bits in the example is smaller than 8 , the slave required only 1 byte for the response. The value of the byte was 02 h , That as binary value will have the form 00000010 . As the number of read bits is equal to 2, only the two less significant bits, that have the value 0 $=$ general disable and $1=$ direction of rotation are of interest, are of interest. The other bits, as they did not be requested, are filled out with 0 (zero).
8.20.3.2 Function 03 - Read Holding Register

It reads the content of a group of registers that must be compulsorily in a numerical sequence. This function has following structure for the read and response messages (the values are always hexadecimal values, and each field represents one byte):

Query (Master)	Response (Slave)
Slave address	Slave address
Function	Function
Initial register address (byte high)	Byte Count Field
Initial register address (byte low)	Data 1 (high)
Number of registers (byte high)	Data 1 (low)
Number of registers (byte low)	Data 2 (high)
CRC-	Data 2 (low)
CRC+	etc...
	CRC-
	CRC+

マ Example: Read of the value proportional to the frequency value (P002) and motor current (P003) of the CFW-08 at address 1:

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	01 h	Slave address	01 h
Function	03 h	Function	03 h
Initial register (byte high)	00 h	Byte Count	04 h
Initial register (byte low)	02 h	P002 (high)	09 h
Number of registers (byte high)	00 h	P002 (low)	C4h
Number of registers (byte low)	02 h	P003 (high)	02 h
CRC-	65 h	P003 (low)	8 h
CRC+	CBh	CRC-	38 h
		CRC +	95 h

Each register is always formed by two bytes (high e low). For the example, we have P002 = 09C4h, that in decimal number is equal to 2500 .
As this parameter have a decimal place indication, the real read value is 25.00 hz . In the same way we will have a current value P003 = 028Ah, that is equal to a 650 decimal. As the current has two decimal resolution, the read value is 6.50 A .
8.20.3.3 Function 05 - Write Single Coil

This function is used to write a value to a single bit. The bit value is represented by using two bytes, where FF00h represents the bit that is equal to 1 , and 0000 h represents the bit that is equal to 0 (zero). It has the following structure (the values are always hexadecimal, and each field represents one byte):

Query (Master)	Response (Slave)
Slave address	Slave address
Function	Function
Bit address (byte high)	Bit address (byte high)
Bit address (byte low)	Bit address (byte low)
Bit value (byte high)	Bit value (byte high)
Bit value (byte low)	Bit value (byte low)
CRC-	CRC-
CRC+	CRC+

凹 Example: to drive a ramp enable command (bit $100=1$) of a CFW-08 at the address 1 :

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	01 h	Slave address	01 h
Function	05 h	Function	05 h
Bit number (high)	00 h	Bit number (high)	00 h
Bit number (low)	64 h	Bit number (low)	64 h
Bit value (high)	FFh	Bit value (high)	FFh
Bit value (low)	00 h	Bit value (low)	00 h
CRC-	CDh	CRC-	CDh
CRC+	E5h	CRC+	E5h

For this function, the slave response is an identical copy of the query sent by the master.

8.20.3.4 Function 06 - Write Single Register

This function is used to write a value to a single register. This function has following structure (values are always hexadecimal values, and each field represents one byte):

Query (Master)	Response (Slave)
Slave address	Slave address
Function	Function
Register address (byte high)	Register address (byte high)
Register address (byte low)	Register address (byte low)
Value for the register (byte high)	Value for the register (byte high)
Value for the register (byte low)	Value for the register (byte low)
CRC-	CRC-
CRC+	CRC+

\square Example: write of the speed reference (basic variable 4) equal to 30.00 hz of a CFW-08 at address 1.

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	01 h	Slave address	01 h
Function	06 h	Function	06 h
Register (high)	13 h	Register (high)	13 h
Register (low)	8 Ch	Register (low)	8 Ch
Value (high)	0 Bh	Value (high)	0 Bh
Value (low)	B8h	Value (low)	B8h
CRC-	4 Bh	CRC-	4 Bh
CRC+	E7h	CRC+	E7h

For this function, the slave response will be again a copy identical to the request made by the master. As already informed above, the basic variables are addressed from 5000, thus the basic variable 4 will be addressed at 5004 (138Ch). The value for this variable is 30.00 hz , that is represented by 3000 (0BB8h).
$\begin{array}{ll}\text { 8.20.3.5 } & \text { Function } 15-\text { Write } \\ & \text { Multiple Coils }\end{array}$

This function allows writing values for a bit group that must be in numerical sequence. This function can be also used to write a single bit (the values are always hexadecimal, and each field represents one byte).

Query (Master)	Response (Slave)
Slave address	Slave address
Function	Function
Initial bit address (byte high)	Initial bit address (byte high)
Initial bit address (byte low)	Initial bit address (byte low)
Number of bits (byte high)	Number of bits (byte high)
Number of bits (byte low)	Number of bits (byte low)
Byte Count Field (number of data bytes)	CRC-
Byte 1	CRC+
Byte 2	
Byte 3	
etc...	
CRC-	
CRC+	

The value of each bit that is being sent is placed at a position of the data bytes sent by the master. The first byte, in the bits 0 to 7 , receives the 8 first bits by starting from the initial address indicated by the master. The other bytes (if the number of inscribed bits is higher than 8) remain in sequence. If the number of inscribed bits is not a multiple of 8 , the remaining bits of the last byte should be filled in with 0 (zero).
\square Example: command writing for general enabling (bit $100=1$), general enabling (bit $101=1$) and CWW-direction of rotation (bit $102=0$), for a CFW-08 at address 1 :

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	01 h	Slave address	01 h
Function	0 Fh	Function	0 Fh
Initial bit (byte high)	00 h	Initial bit (byte high)	00 h
Initial bit (byte low)	64 h	Initial bit (byte low)	64 h
Number of bits (byte high)	00 h	Number of bits (byte high)	00 h
Number of bits (byte low)	03 h	Number of bits (byte low)	03 h
Byte Count	01 h	CRC-	54 h
Bits Value	03 h	CRC+	15 h
CRC-	BEh		
CRC+	9 h		

As only three bits are written, the master needed only one byte to transmit the data. The transmitted values are in the three less significant bits of the byte that contains the value for the bits. The other bits of this byte remained with the value 0 (zero).

8.20.3.6 Function 16 - Write Multiple Registers

This function allows writing values to a register group that must be in numerical sequence. This function can also be used to write a single register (the values are always hexadecimal values and each field represents one byte).

Query (Master)	Response (Slave)
Slave address	Slave address
Function	Function
Initial register address (byte high)	Initial register address (byte high)
Initial register address (byte low)	Initial register address (byte low)
Number of registers (byte high)	Number of registers (byte high)
Number of registers (byte low)	Number of registers (byte low)
Byte Count Field (number of data bytes)	CRC-
Data 1 (high)	CRC+
Data 1 (low)	
Data 2 (high)	
Data 2 (low)	
etc...	
CRC-	
CRC+	

\square Example: writing of the acceleration time $(\mathrm{P} 100)=1,0$ s and deceleration time $(\mathrm{P} 101)=2,0 \mathrm{~s}$, of a CFW-08 at the address 20:

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	14 h	Slave address	14 h
Function	10 h	Function	10 h
Initial register (byte high)	00 h	Initial register (byte high)	00 h
Initial register (byte low)	64 h	Initial register (byte low)	64 h
Number of registers (byte high)	00 h	Number of registers (byte high)	00 h
Number of registers (byte low)	02 h	Number of registers (byte low)	02 h
Byte Count	04 h	CRC-	02 h
P100 (high)	00 h	CRC+	D2h
P100 (low)	0 hh		
P101 (high)	00 h		
P101 (low)	14 h		
CRC-	91 h		
CRC+	75 h		

As the two parameters have a resolution of a decimal place for writing of 1.0 and 2.0 seconds, thus the values 10 (000Ah) and 20 (0014h) should be transmitted.
8.20.3.7 Function 43 - Read Auxiliary function that permits reading of the manufacturer, model and Device Identification

Query (Master)	Response (Slave)
Slave address	Slave address
Function	Function
MEI Type	MEIType
Read Code	Conformity Level
Object Number	More Follows
CRC-	Next Object
CRC+	Number of Objects
	Object Code*
	Object length*
	Object Value*
	CRC-

\square The fields are repeated according to the number of objects.
This function permits reading of three information categories:
Basic, Regular and Extended and each category are formed by a group of objects. Each object is formed by a sequence of ASCII characters For the CFW-08 are only available basic information formed by three objects:
\square Object 00 - VendorName: always 'WEG'.
\square Object 01 - ProductCode: formed by the product code (CFW-08), plus the rated inverter current.
\square Object 02 - MajorMinorRevision: it indicates the inverter firmware version, in 'VX. XX ' format.
The read code indicates which information categories are being read and if the objects are accessed individually of by sequence.
In the example, the inverter supports 01 (basic information in sequence), and 04 (individual access to the objects).
The other fields for the CFW-08 have fixed values.
$\boxed{\square}$ Example: read o basic information in sequence, starting from object 00, of a CFW-08 at address 1:

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	01 h	Slave address	01 h
Function	2 Bh	Function	2 Bh
MEIType	0 Eh	MEIType	0 Eh
Read Code	01 h	Read Code	01 h
Object Number	00 h	Conformity Level	51 h
CRC-	70 h	More Follows	00 h
CRC+	77 h	Next Object	00 h
		Number of Objects	03 h
		Object Code	00 h
		Object Length	03 h
		Object Value	'WEG'
		Object Code	01 h
		Object Length	0 Eh
	Object Value	'CFW-08 7.0A'	
	Object Code	02 h	
		Object Length	05 h
	Object Value	'V3.77'	
		CRC-	C7h

8.20.4 Communication Errors

8.20.4.1 Error Messages

In the example the Object Value has not been represented as hexadecimal value, but with corresponding ASCII characters.
For instance, for the object 00, the 'WEG' value has been transmitted as being three ASCII characters, that as hexadecimal have the values 57 h (W), 45h (E) e 47h (G).

Errors can occur during the message transmission on network, or in the content of the received messages. Depending on the error type, inverter may answer or not to the master:
When the master sends a message to an inverter configured at determined network address, the inverter will not response if:
\square Error in the parity bit.
\square Error the CRC.
0 Time out between transmitted bytes (3.5 times the time required for the transmission of a 11-bit word).
In the case of a successful reception of the message, the inverter can detect problems and send a error message to the master indicating the problem that has been verified:
团 Invalid function (error code = 1): the requested function has not been implemented for the inverter.
\square Invalid data address (error code = 2): the data address (register or bit) does not exist.
\square Data value invalid (error code = 3): this error occurs in the following conditions:
\square Value is out of permitted range.
\boxed{W} Writing in data that cannot be changed (only read register, or register that does not allow changing with enabled inverter or bits of logic status).
\square Writing in function of the logic command that has not been enabled via serial interface.

When any error occurs in the message content (not during the data transfer), the slave must return a message indicating the error type that occurred. The errors that may occur in the CFW-08 during the message processing are errors relating to invalid function (code 01), invalid data address (code 02) and invalid data value (code 03).
The messages sent by the slave have following structure:

Response (Slave)
Slave address
Function Code
(with most significant bit to 1)
Error code
CRC-
CRC+

\square Master requests from the slave at address 1 to write parameter 89 (inexistent parameter):

Query (Master)		Response (Slave)	
Field	Value	Field	Value
Slave address	01 h	Slave address	01 h
Function	06 h	Function	86 h
Register (high)	00 h	Error Code	02 h
Register (low)	59 h	CRC-	C3h
Value (high)	00 h	CRC+	A1h
Value (low)	00 h		
CRC-	59 h		
CRC+	D9h		

TECHNICALSPECIFICATIONS

This chapter describes the technical specifications (electrical and mechanical) of the CFW-08 inverter series.

9.1 POWER DATA

AC Input Specifications:
\square Voltage: + 10\%, -15\% (with loss of motor efficiency)
\square Frequency: $50 / 60 \mathrm{~Hz}(\pm 2 \mathrm{~Hz})$
■ Phase unbalance: $\leq 3 \%$
(Overvoltage: Category III (EN 61010/UL 508C)
■ Transient voltages according to Category III.
Minimum line impedance: variable according to inverter model.
Refer to Section 8.16.
Power-up: max. 10 ON/OFF cycles per hour.

9.1.1 200-240V Power Supply

Model: Current/Voltage	$\left\|\begin{array}{c} 1.6 / \\ 200-240 \end{array}\right\|$	$\begin{gathered} 2.6 / \\ 200-240 \end{gathered}$	$\left\|\begin{array}{c} 4.0 / \\ 200-240 \end{array}\right\|$	$\left\|\begin{array}{c} 1.6 / \\ 200-240 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 2.6 / \\ 200-240 \end{gathered}\right.$	$\left\|\begin{array}{c} 4.0 / \\ 200-240 \end{array}\right\|$	$\left\|\begin{array}{c} 7.0 / \\ 200-240 \end{array}\right\|$	$\left\|\begin{array}{c} 7.3 / \\ 200-240 \end{array}\right\|$	$\left\|\begin{array}{c} 10 / \\ 200-240 \end{array}\right\|$	$\begin{gathered} 16 / \\ 200-240 \end{gathered}$
Power (kVA) ${ }^{(1)}$	0.6	1.0	1.5	0.6	1.0	1.5	2.7	2.8	3.8	6.1
Rated Output Current (A) ${ }^{(2)}$	1.6	2.6	4.0	1.6	2.6	4.0	7.0	7.3	10	16
Max. Output Current (A) ${ }^{(3)}$	2.4	3.9	6.0	2.4	3.9	6.0	10.5	11	15	24
Power Supply	Single-phase			Single-phase or three-phase			Threephase	Single-phase or three-phase		Threephase
Rated Input Current (A)	3.5	5.7	8.8	2.0/3.5 ${ }^{(4)}$	3.1/5.7 ${ }^{(4)}$	$4.8 / 8.8{ }^{(4)}$	8.1	8.6/16 ${ }^{(4)}$	12/22 ${ }^{(4)}$	19
Switching Frequency (kHz)	5	5	5	5	5	5	5	5	5	5
Max. Motor Power ${ }^{(5)}$	$\begin{aligned} & 0.25 \mathrm{HP} / \\ & 0.18 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \hline 0.5 \mathrm{HP} / \\ & 0.37 \mathrm{~kW} \end{aligned}$	$\begin{gathered} 1 \mathrm{HP} / \\ 0.75 \mathrm{~kW} \end{gathered}$	$\begin{aligned} & 0.25 \mathrm{HP} / \\ & 0.18 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \hline 0.5 \mathrm{HP} / \\ & 0.37 \mathrm{~kW} \end{aligned}$	$1 \mathrm{HP} /$ 0.75 kW	$\begin{gathered} \hline 2 \mathrm{HP} / \\ 1.5 \mathrm{~kW} \end{gathered}$	$\begin{gathered} \hline 2 \mathrm{HP} / \\ 1.5 \mathrm{~kW} \end{gathered}$	$\begin{gathered} \hline 3 \mathrm{HP} / \\ 2.2 \mathrm{~kW} \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{HP} / \\ 3.7 \mathrm{~kW} \end{gathered}$
Dynamic Braking	No	Yes	Yes	Yes						
Internal Class A RFI Filter (optional)	No	Yes (single- phase)		No						
Footprint Class A RFI Filter (optional)	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No
External Class B RFI Filter (optional)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No
Watt Loss (W)	30	35	50	30	35	50	75	90	100	150
Dimensions (Height x Width \times Depth)	$\begin{aligned} & 5.95 \times 2.95 \times 5.16 \text { in } \\ & (151 \times 75 \times 131 \mathrm{~mm}) \end{aligned}$							$\begin{gathered} 7.87 \times 4.53 \times 5.91 \mathrm{in} \\ (200 \times 115 \times 150 \mathrm{~mm}) \end{gathered}$		

9.1.2 380-480V Power Supply

Model: Current/Voltage	$\begin{gathered} 1.0 / \\ 380-480 \end{gathered}$	$\begin{gathered} 1.6 / \\ 380-480 \end{gathered}$	$\begin{array}{\|c\|} \hline 2.6 / \\ 380-480 \end{array}$	$\begin{gathered} 4.0 / \\ 380-480 \end{gathered}$	$\begin{gathered} 2.7 / \\ 380-480 \end{gathered}$	$\begin{gathered} 4.3 / \\ 380-480 \end{gathered}$	$\begin{gathered} 6.5 / \\ 380-480 \end{gathered}$	$\begin{gathered} 10 / \\ 380-480 \end{gathered}$
Power (kVA) ${ }^{(1)}$	0.8	1.2	2.0	3.0	2.1	3.3	5.0	7.6
Rated Output Current (A) ${ }^{(2)}$	1.0	1.6	2.6	4.0	2.7	4.3	6.5	10
Max. Output Current (A) ${ }^{(3)}$	1.5	2.4	3.9	6.0	4.1	6.5	9.8	15
Rated Input Current (A)	1.2	1.9	3.1	4.7	3.3	5.2	7.8	12
Switching Frequency (kHz)	5	5	5	5	5	5	5	5
Max. Motor Power ${ }^{(5)}$	$0.25 \mathrm{HP} /$ 0.18 kW	$\begin{aligned} & \hline 0.5 \mathrm{HP} / \\ & 0.37 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{HP} / \\ & 1.1 \mathrm{~kW} \end{aligned}$	$\begin{gathered} \hline 2 \mathrm{HP} / \\ 1.5 \mathrm{~kW} \end{gathered}$	$\begin{aligned} & 1.5 \mathrm{HP} / \\ & 1.1 \mathrm{~kW} \end{aligned}$	$\begin{gathered} \hline 2 \mathrm{HP} / \\ 1.5 \mathrm{~kW} \end{gathered}$	$\begin{gathered} 3 \mathrm{HP} / \\ 2.2 \mathrm{~kW} \end{gathered}$	$\begin{gathered} 5 \mathrm{HP} / \\ 3.7 \mathrm{~kW} \end{gathered}$
Dynamic Braking	No	No	No	No	Yes	Yes	Yes	Yes
Internal Class A RFI Filter (optional)	No	No	No	No	Yes	Yes	Yes	Yes
Footprint Class A RFI Filter (optional)	Yes	Yes	Yes	Yes	No	No	No	No
External Class B RFI Filter (optional)	Yes							
Watt Loss (W)	25	30	45	55	45	55	90	240
Dimensions (Height x Width x Depth)	$\begin{aligned} & 5.95 \times 2.95 \times 5.16 \mathrm{in} \\ & (151 \times 75 \times 131 \mathrm{~mm}) \\ & \hline \end{aligned}$				$\begin{gathered} 7.87 \times 4.53 \times 5.91 \mathrm{in} \\ (200 \times 115 \times 150 \mathrm{~mm}) \end{gathered}$			

Model: Current/Voltage	$13 /$ $380-480$	$16 /$ $380-480$
Power (kVA) ${ }^{(1)}$	9.9	12.2
Rated Output Current (A) ${ }^{(2)}$	13	16
Max. Output Current (A) ${ }^{(3)}$	19.5	24
Rated Input Current (A)	15	19
Switching Frequency (kHz)	5	5
Max. Motor Power ${ }^{(5)}$	$7.5 \mathrm{HP} / 5.5 \mathrm{~kW}$	$10 \mathrm{HP} / 7.5 \mathrm{~kW}$
Dynamic Braking	Yes	Yes
Internal Class A RFI Filter (optional)	Yes	Yes
External Class B RFI Filter $($ optional)	Yes	Yes
Watt Loss (W)	150	240
Dimensions (Height \times Width \times Depth)	$7.99 \times 5.63 \times 6.50 \mathrm{in}$	

NOTE!

(1) The power rating in VA is determined by the following equation:

$$
P(k V A)=\frac{\sqrt{3} \cdot \text { Voltage (Volt) . Current (Amp) }}{1000}
$$

The values shown in the table were calculated by considering the rated inverter current, input voltage of 220 V for the $220-240 \mathrm{~V}$ models and input voltage of 440 Vfor the $380-480$ models.
(2) Rated current is valid for the following conditions:
\square Relative air humidity: 5% to 90%, non condensing.
\square Altitude : $3300 \mathrm{ft}(1000 \mathrm{~m})$, up to $13200 \mathrm{ft}(4000 \mathrm{~m})$ with 10% derating $/ 3300 \mathrm{ft}(1000 \mathrm{~m})$ of the rated current.
\square Ambient temperature: 32° to $104{ }^{\circ} \mathrm{F}\left(0 \ldots 40^{\circ} \mathrm{C}\right.$) (up to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ with $2 \% /{ }^{\circ} \mathrm{C}$ derating of the rated current).
\square The rated current values are valid for the switching frequencies of 2.5 kHz or 5 kHz (factory setting). For higher switching frequencies, 10 kHz and 15 kHz , consider the values shown in the description of the parameter P297(refer to chapter 6).
(3) Maximum Current:

Inverter supports an overload of 50\% (maximum output current $=1.5 x$ the rated output current) during 1 minute for each 10 minutes of operation. For higher switching frequencies, 10 kHz and
15 kHz , consider the values shown at the description of the parameter P297(refer to chapter 6).
(4) Rated input current for single-phase operation. Note: The models CFW080016B2024..., CFW080026B2024..., CFW080040B2024..., CFW080073B2024... and CFW080100B2024... can be operated both with single-phase voltage and three-phase voltage without output current derating.
(5) The indicated motor power ratings are only orientative values for IV-pole motors and normal duty loads. The precise inverter sizing must consider the actual motor nameplate and application data.

9.2 ELECTRONICS/GENERAL DATA

CONTROL	METHOD	```Voltage Source Inverter V/F Control or Sensorless Vector Control (VVC - Voltage Vector Control). PWMSVM (Space Vector Modulation).```
	OUTPUT FREQUENCY	0 $0 \ldots 300 \mathrm{~Hz}$, resolution of 0.01 Hz .
PERFORMANCE	V/F CONTROL	\square Speed regulation: 1% of the rated speed.
	VECTOR CONTROL	T Speed regulation: 0.5% of the rated speed.
INPUTS (Control Board ECC2)	ANALOG	\square CFW-08: 1 isolated input, resolution: 7 bits, 0 to +10 V or (0) 4 to 20 mA , Impedance: $100 \mathrm{k} \Omega(0 \pm 10 \mathrm{~V}), 500 \Omega$ [(0) 4 to 20 mA$]$, progr. functions. \square CFW-08 Plus: 2 isolated inputs, resolution: 7 bits, 0 to +10 V or (0) 4 to 20 mA , Impedance: $100 \mathrm{k} \Omega(0 \mathrm{a}+10 \mathrm{~V}), 500 \Omega[(0) 4$ to 20 mA$]$, programmable functions.
	DIGITAL	T 4 isolated digital inputs, 12 Vdc , programmable functions
OUPUTS (Control Board)	ANALOG	CFW-08 Plus: 1 isolated output, $0 a+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \leq 10 \mathrm{k}$ (max. load.), resolution: 8 bits, programmable functions
	RELAY	CFW-08: 1 relay with reverse contacts, 240VAC, 0.5 A, programmable functions CFW-08 Plus: 2 relays, one with NO contact and one with NC contact. It can be programmed to operate as 1 reverse, 240VAC, 0.5 A , programmable functions
SAFETY	PROTECTION	\square Overcurrent/output short-circuit Output groung fault DC link under/overvoltage Inverter overtemperature Motor/inverter overload (IxT) External fault Programming error Self-tuning error Defective inverter
KEYPAD (HMI)	STANDARD (HMI-CFW-08-P)	8 keys: start, stop, increment, decrement, FWD/REV, JOG, local/remote and programming LEDs display: 4 digits with 7 segments LEDs for FWD/REV and LOCAL/REMOTE indication It permits access/alteration of all parameters Display accuracy: - current: 10% of the rated current - speed resolution: 1 rpm - frequency resolution: 0.01 Hz
DEGREE OF PROTECTION	NEMA1 / IP20	T Models 13 and 16A/380-480V; other models with KN1-CFW08-M1 and KN1-CFW08-M2 kits.
	PROTECTED CHASSIS/ IP20	■ All models without KN1-CFW08-M1 or KN1-CFW08-M2 kit. Exception: Models 13 and 16A/380-480V.
STANDARDS	IEC 146	凹 Inverters and semicondutors
	UL 508 C	Q Power Conversion Equipment
	EN 50178	W Electronic equipment for use in power installations
	EN 61010	\square Safety requirements for electrical equipment for measurement, control and laboratory use
	EN 61800-3	■ EMC product standard for adjustable speed electrical power drive systems

9.3 WEG STANDARD IV POLE MOTOR DATA

The inverters are delivered with factory setting to drive WEG three-phase, IV-pole, IP55 motors, frequency of 60 Hz , voltage of 220 V for $200-240 \mathrm{~V}$ models or 380 V for $380-480 \mathrm{~V}$ modelS and with power as indicated in the Tables of Sections 9.1.1 and 9.1.2.
The data of the applied motor must be programmed at P399 to P409 and the value of P409 (stator resistance) obtained through the Self-Tuning (parameter estimation via P408).
The table below shows the data of WEG standard motors as a reference.

Power [P404]		Frame	Voltage [P400] (V)		Freq. [P403] (Hz)	$\begin{gathered} \text { Speed } \\ \text { [P402] } \\ \text { (rmp) } \end{gathered}$	Efficiency at rated load η [P399] (\%)	Power Factor at rated load $\cos \varphi$ [P407]	Stator Resistance (") [P409] (Ω)
(HP)	(kW)								
0.16	0.12	63	220	0.85	60	1720	56.0	0.66	21.77
0.25	0.18	63		1.12		1720	64.0	0.66	14.87
0.33	0.25	63		1.42		1720	67.0	0.69	10.63
0.5	0.37	71		2.07		1720	68.0	0.69	7.37
0.75	0.55	71		2.90		1720	71.0	0.70	3.97
1.0	0.75	80		3.08		1730	78.0	0.82	4.13
1.5	1.10	80		4.78		1700	72.7	0.83	2.78
2.0	1.50	90S		6.47		1720	80.0	0.76	1.55
3.0	2.20	90L		8.57		1710	79.3	0.85	0.99
4.0	3.00	100L		11.6		1730	82.7	0.82	0.65
5.0	3.70	100L		13.8		1730	84.6	0.83	0.49
6.0	4.50	112M		16.3		1730	84.2	0.86	0.38
0.16	0.12	63	380	0.49	60	1720	56.0	0.66	65.30
0.25	0.18	63		0.65		1720	64.0	0.66	44.60
0.33	0.25	63		0.82		1720	67.0	0.69	31.90
05	0.37	71		1.20		1720	68.0	0.69	22.10
0.75	0.55	71		1.67		1720	71.0	0.70	11.90
1.0	0.75	80		1.78		1730	78.0	0.82	12.40
1.5	1.10	80		2.76		1700	72.7	0.83	8.35
2.0	1.50	90S		3.74		1720	80.0	0.76	4.65
3.0	2.20	90L		4.95		1710	793	0.85	2.97
4.0	3.00	100L		6.70		1730	82.7	0.82	1.96
5.0	3.70	100L		7.97		1730	84.6	0.83	1.47
6.0	4.50	112M		9.41		1730	84.2	0.86	1.15
75	5.50	112M		11.49		1740	88.5	0.82	0.82
10	7.50	132S		15.18		1760	89.0	0.84	0.68
12.5	9.20	132M		18.48		1755	87.7	0.86	0.47

NOTES!

(*)
The inverter considers the value of the stator resistance as the motor has been always star-connected, independently of its connection in the terminal box.
\square The values of the stator resistance is a mean value per phase considering the motors with temperature rise $(\Delta \mathrm{T})$ of $100^{\circ} \mathrm{C}$.

WARRANTY

WARRANTY TERMS FOR FREQUENCY INVERTERS CFW-08

WEG warrants its Frequency Inverters against defects in workmanship and materials under the following conditions:
1.0 For the effectiveness of this warranty it is essential that the purchaser inspects carefully the purchased inverter, immediately after receipt, checking its characteristics and following its installation, adjustments, operation and maintenance instructions. The inverter will be considered as accept and approved automatically by the purchaser, when the purchaser does not give written notice within max. five days after the receipt of the product about verified non-conformities.
2.0 The warranty period is for twelve months from the invoice date of the equipment issued by WEG or its authorized distributor, proved through equipment invoice, but limited to twenty four months from the manufacturing date, that is indicated on the product nameplate.
3.0 In case the inverter fails to function or operate incorrectly during the warranty time, the warranty services will be carried out, at WEG discretion, at its Authorized Repair Shops.
4.0 The failed product must be available to the supplier for a required period to detect the cause of the failure and to make the corresponding repairs.
5.0 WEG Automação, or its Authorized Repair Shops will analyze the returned inverter and when the existence of the failure covered by the warranty is proved, it will repair, modify or replace, at its discretion, the defective inverter without cost to the purchaser, except as indicated in Item 7.0.
6.0 The present warranty responsibility is limited only to repairs, changes or replacement of the supplied inverter. WEG will have no obligation or liability whatsoever to people, third parties, other equipment or installations, including without limitation, any claims for loss of profits, consequential damages or labor costs.
7.0 Other expenses as freights, packing, disassembling/assembling and parameter setting costs will be paid exclusively by the purchaser, including all fees, ticket, accommodation and meals expenses for technical personnel, when needed and/or requested by the customer.
8.0 The present warranty does not cover the normal wear of the product or equipment, neither damages resulting from incorrect or negligent operation, incorrect parameter setting, improper maintenance or storage, operation out the technical specification, bad installation quality, or operated in ambient with corrosives gases or with harmful electrochemical, electrical, mechanical or atmospheric influences.
9.0 This warranty does not cover parts or components that are considered consumer goods, such as rubber or plastic parts, incandescent bulbs, fuses, etc.
10.0 This warranty will be cancelled automatically, independently of any previous written notice or not, when the purchaser, without previous written authorization by WEG, makes or authorized third parties to make any changes or repair on the product or equipment that failed during the warranty period.
11.0 Repairs, changes, or replacements due to manufacturing defects will not stop nor extend the period of the existing warranty.
12.0 Any request, complaint, communication, etc. related to the product under warranty, servicing, start-up, etc., shall be sent in writing to WEG Branch or Representative.
13.0 The Warranty granted by WEG is conditioned by the observation of this warranty that is the only valid warranty for the good.

[^0]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).
 ${ }^{(2)}$ The factory default of Parameter P136 depends on the inverter model as follows:

 - models 1.6-2.6-4.0-7.0A/200-240V or 1.0-1.6-2.6-4.0A/380-480V: P136=5.0\%;
 - models $7.3-10-16 \mathrm{~A} / 200-240 \mathrm{~V}$ or 2.7-4.3-6.5-10A/380-480V: P136=2.0\%;
 - models 13-16A/380-480V: P136=1.0\%.

[^1]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped),

[^2]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).
 ${ }^{(2)}$ Value may change as a function of P203.

[^3]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^4]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^5]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^6]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^7]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^8]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^9]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^10]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^11]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^12]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^13]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^14]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^15]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

[^16]: ${ }^{(1)}$ This parameter can be changed only with the inverter disabled (motor stopped).

