

series 7000

Analog Electronic Controls Application Guide

Series 7000 Application Guide

CONTROL SEQUENCES

Single Duct, Constant Volume and Static Pressure

SD7000	3
SD7001	
SD7100	
SD7101	
SD7600	
SD7606, SD7607	
Other Single Duct Sequences	

Dual Duct Variable Air Volume

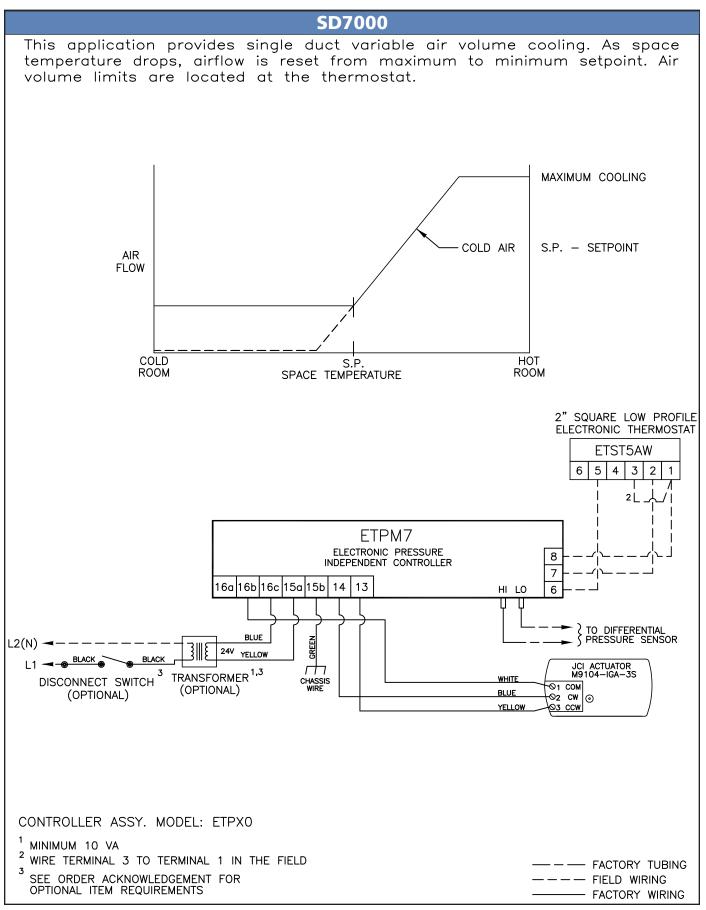
DD7100	.11	ĺ
Other Dual Duct Sequences	.12)

Series Flow Fan Powered (Continuous Fan)

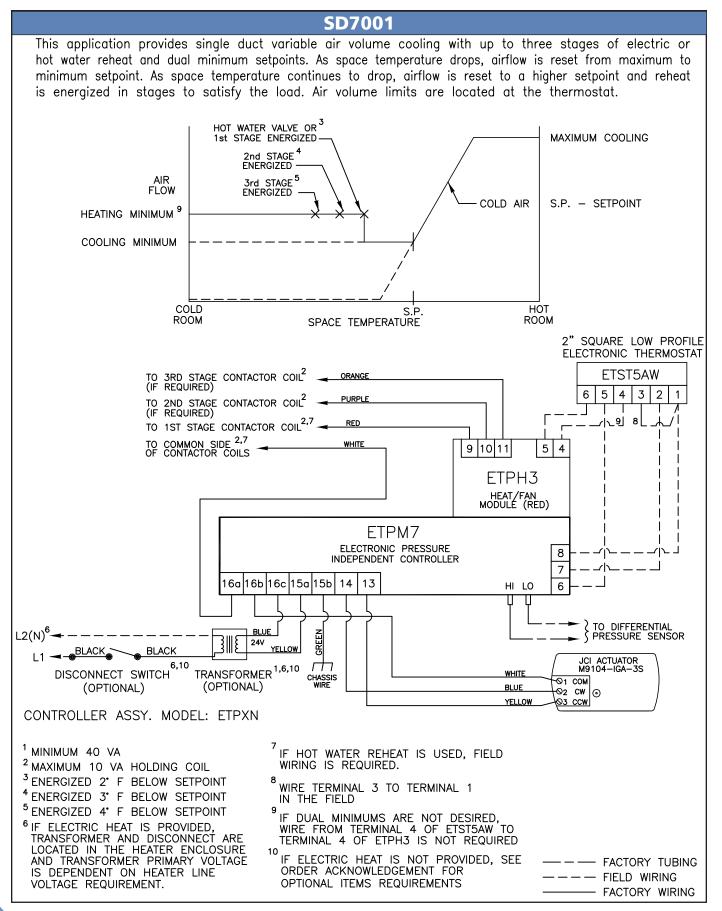
FC7001	13
FC7101	
FC7201	15
FC7401	
Other Series Flow Fan Powered Sequences	

Parallel Flow Fan Powered (Intermittent Fan)

FV7001	21
FV7101	22
FV7201	23
FV7401	
Other Parallel Flow Fan Powered Sequences	25


CROSS REFERENCE	GUIDE	0

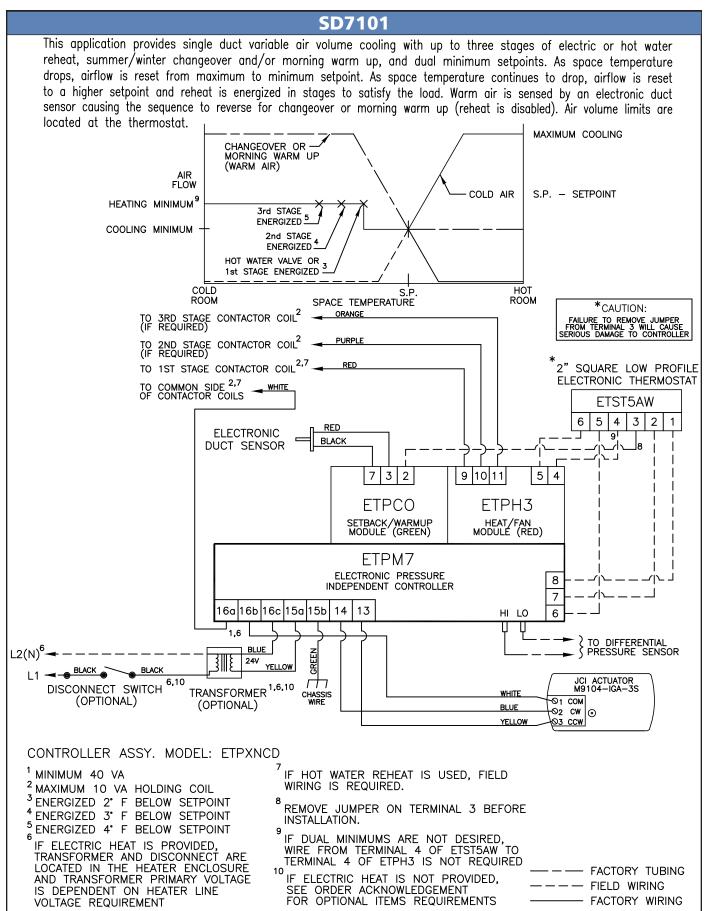
Drawings in this catalog are subject to change without notice. Visit the ENVIRO-TEC[®] website at **www.enviro-tec.com** for current sequence drawings.



SINGLE DUCT SEQUENCES • SERIES 7000

SERIES 7000 • SINGLE DUCT SEQUENCES

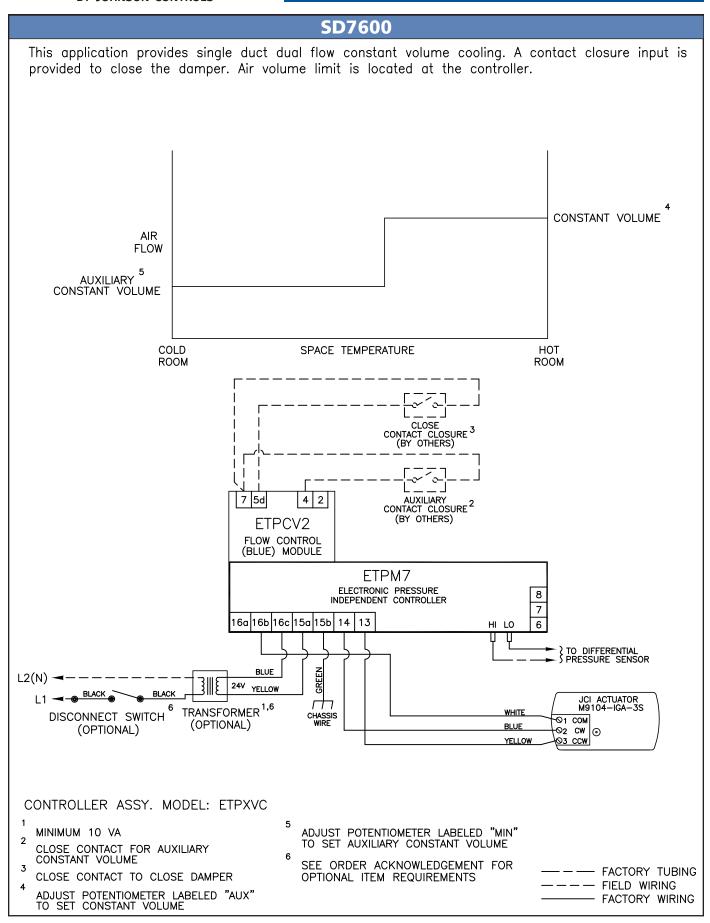
Johnson Controls



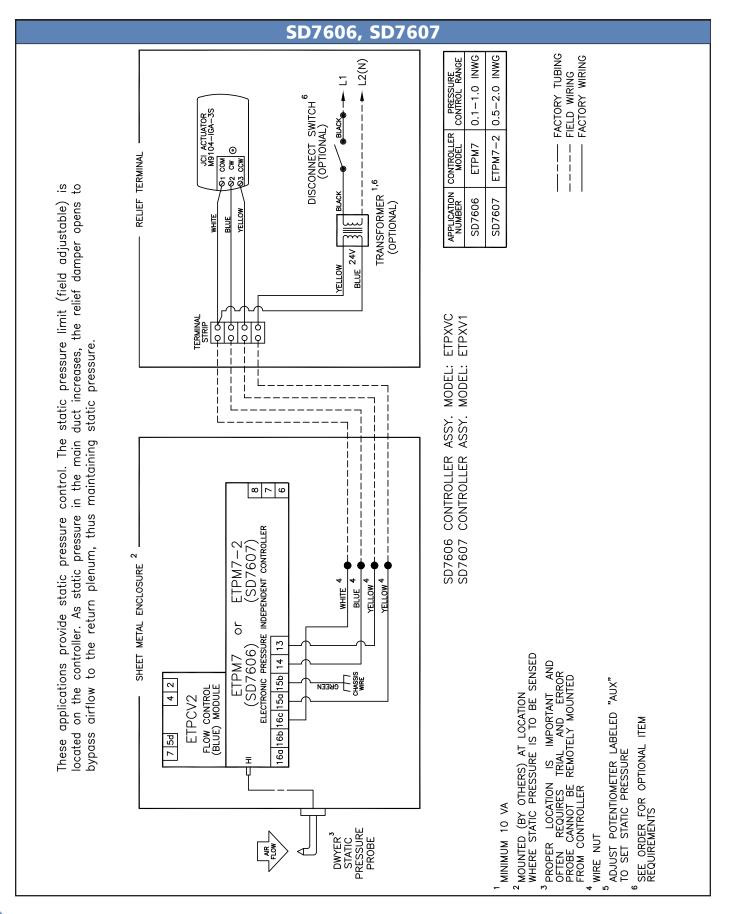
SINGLE DUCT SEQUENCES • SERIES 7000

SD7100 This application provides single duct variable air volume cooling with summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up. Air volume limits are located at the thermostat. MAXIMUM COOLING CHANGEOVER OR MORNING WARM UP (WARM AIR) COLD AIR S.P. - SETPOINT AIR FLOW COLD HOT S.P ROOM ROOM SPACE TEMPERATURE *2" SQUARE LOW PROFILE ELECTRONIC THERMOSTAT ETST5AW 4 3 6 5 2 1 RED ELECTRONIC BLACK 2 DUCT SENSOR 7 3 2 **ETPCO** SETBACK/WARMUP MODULE (GREEN) ETPM7 ELECTRONIC PRESSURE INDEPENDENT CONTROLLER 8 7 16a 16b 16c 15a 15b 14 13 HI LO 6 CONTRACTOR STREET BLUE GREEN L2(N) -3∎€ 24V YELLOW BLACK JCI ACTUATOR M9104-IGA-3S DISCONNECT SWITCH Π TRANSFORMER^{1,3} WHITE CHASSIS WIRE -01 COM (OPTIONAL) (OPTIONAL) BLUE •O2 C₩ 0 YELLOW ©3 CCW *CAUTION: FAILURE TO REMOVE JUMPER FROM TERMINAL 3 WILL CAUSE SERIOUS DAMAGE TO CONTROLLER CONTROLLER ASSY. MODEL: ETPXOCD ---- FACTORY TUBING ¹ MINIMUM 10 VA SEE ORDER ACKNOWLEDGEMENT FOR ² REMOVE JUMPER ON TERMINAL 3 BEFORE INSTALLATION OPTIONAL ITEM REQUIREMENTS ---- FIELD WIRING - FACTORY WIRING

SERIES 7000 • SINGLE DUCT SEQUENCES



6



SINGLE DUCT SEQUENCES • SERIES 7000

SERIES 7000 • SINGLE DUCT SEQUENCES

OTHER SINGLE DUCT CONTROL SEQUENCES

(See ENVIRO-TEC[®] submittal data for additional information on the sequences below).

SD7003: This application provides single duct variable air volume cooling with proportional modulating hot water reheat and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPHM1 (Heat/Fan Module [Red]).

ENVIRO-TEC[®]

BY JOHNSON CONTROLS

SD7004: This application provides single duct variable air volume cooling with floating modulating hot water reheat and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPHM2 (Heat/Fan Module [Red]).

SD7005: This application provides single duct variable air volume cooling with proportional modulating electric (SSR) reheat and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPHM3 (Heat/Fan Module [Red]).

SD7103: This application provides single duct variable air volume cooling with proportional modulating hot water reheat, summer/winter changeover and/or morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPHM1 (Heat/Fan Module [Red]).

SD7104: This application provides single duct variable air volume cooling with floating modulating hot water reheat, summer/winter changeover and/or morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPHM2 (Heat/Fan Module [Red]).

SD7105: This application provides single duct variable air volume cooling with proportional modulating electric (SSR) reheat, summer/winter changeover and/or morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPHM3 (Heat/Fan Module [Red]).

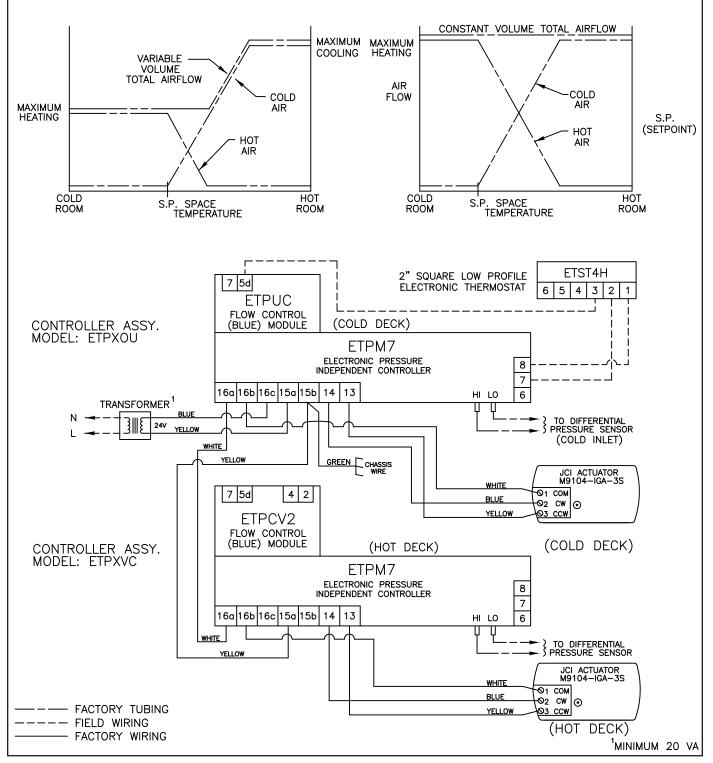
SD7300: This application provides single duct variable air volume cooling with morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and ETPW (Setback/Warm up Module [Green]).

SD7301: This application provides single duct variable air volume cooling with up to three stages of electric reheat (On/Off) or hot water reheat (two-position), morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset

from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPH3 (Heat/Fan Module [Red]).

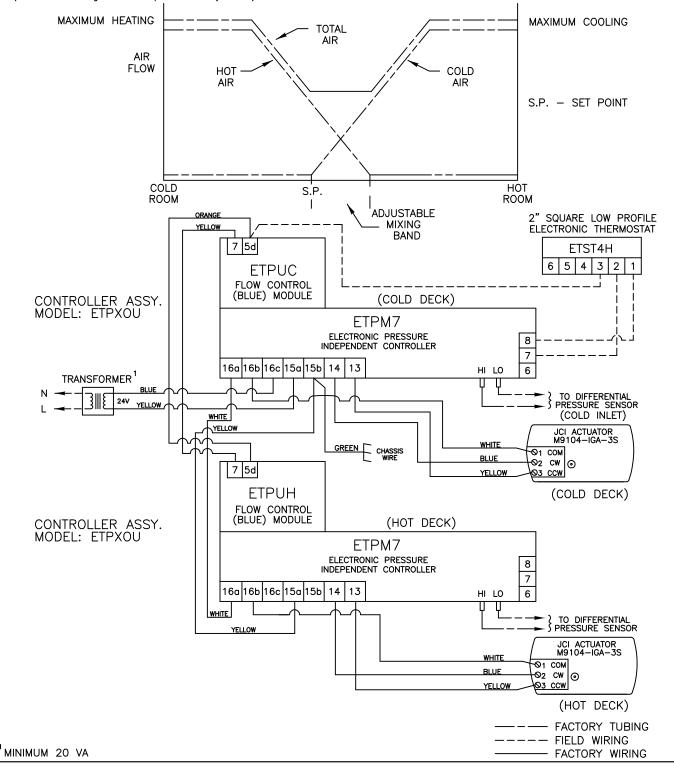
SD7303: This application provides single duct variable air volume cooling with modulating hot water reheat, morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPHM1 (Heat/Fan Module [Red]).

SD7304: This application provides single duct variable air volume cooling with floating modulating hot water reheat, morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPHM2 (Heat/Fan Module [Red]).

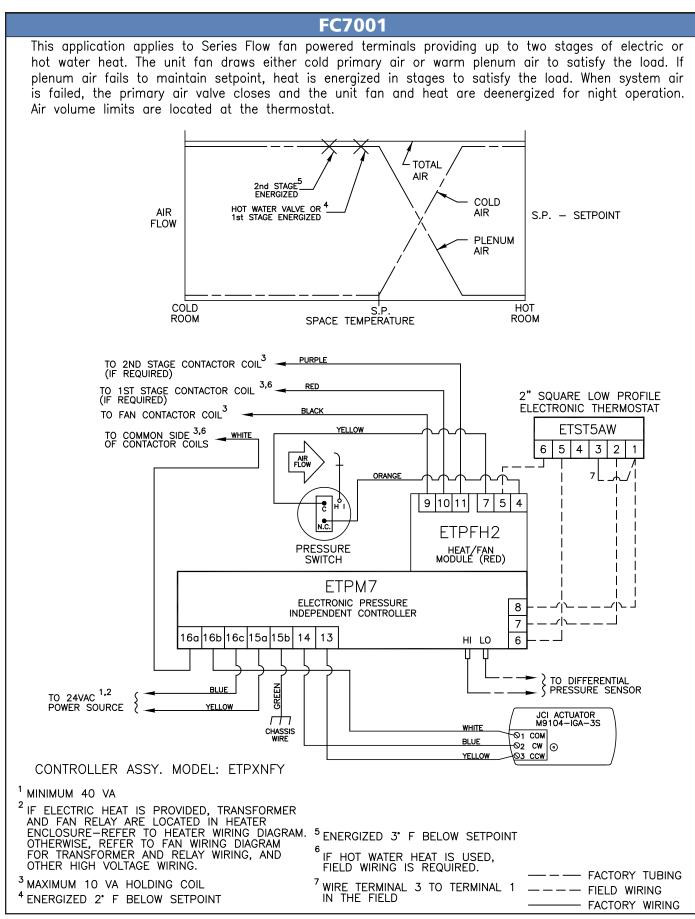

SD7305: This application provides single duct variable air volume cooling with proportional modulating electric (SSR) reheat, morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPHM3 (Heat/Fan Module [Red]).

DUAL DUCT SEQUENCES • SERIES 7000

DT7100

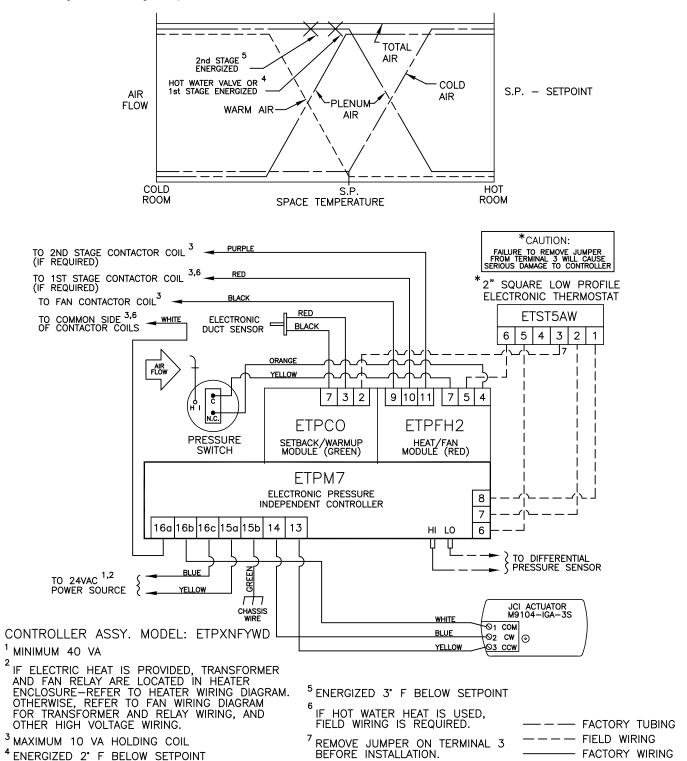

This application provides dual duct constant or variable volume discharge control. When the space temperature is warm, the cold damper maintains maximum cooling setpoint while the hot damper maintains minimum heating airflow setpoint. As the space temperature drops, the cold damper modulates closed while the hot damper opens. As the space temperature continues to fall, the cold damper maintains minimum cooling airflow setpoint and the hot damper maintains maximum heating airflow setpoint. Airflow limits for the cold deck are located on the ETPUC module. Total airflow limit is located on the ETPCV2 module. Heating minimum airflow limit is set by the difference in cold deck maximum and total airflow limits.

DD7200 (Other Dual Duct Control Sequences)


This application provides dual duct variable volume discharge controls. When space temperature is warm, the cold air valve maintains maximum cooling airflow setpoint while the hot air valve remains closed. As space temperature drops, the cold air valve modulates to its minimum airflow setpoint while the hot air valve opens to maintain the minimum total airflow setpoint. As space temperature continues to drop, the cold air valve maintains minimum cooling airflow setpoint while the hot air valve maintains minimum cooling airflow setpoint while the hot air valve maintains maximum heating airflow setpoint. Maximum and minimum cooling airflow limits are located on the ETPUC cold deck module. Maximum heating airflow setpoint adjustment, miminum total airflow setpoint adjustment and mixing band adjustment are located on the ETPUH hot deck module (minimum heating airflow setpoint is always zero).

Johnson Controls

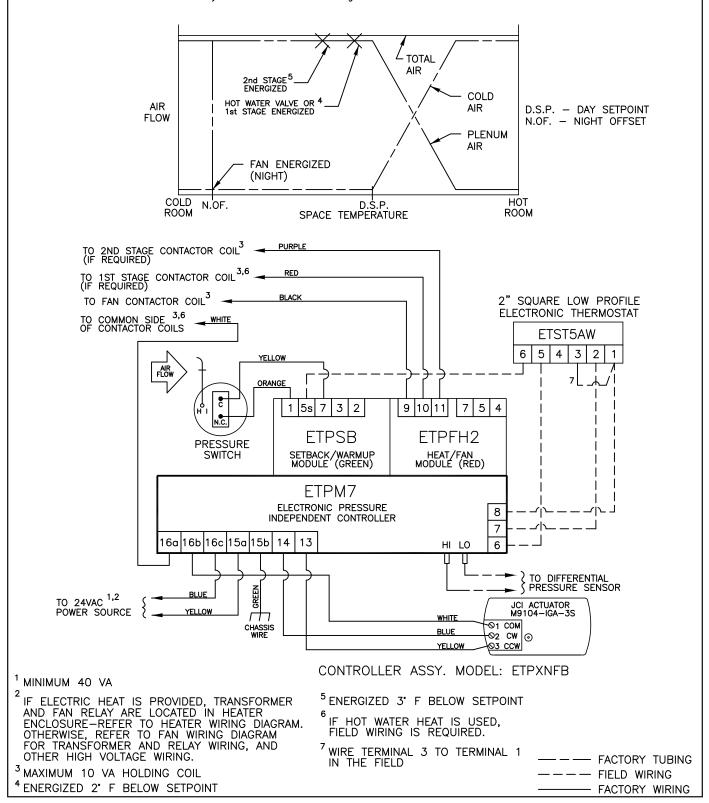
Series Flow Fan Powered • Series 7000



SERIES 7000 • SERIES FLOW FAN POWERED

FC7101

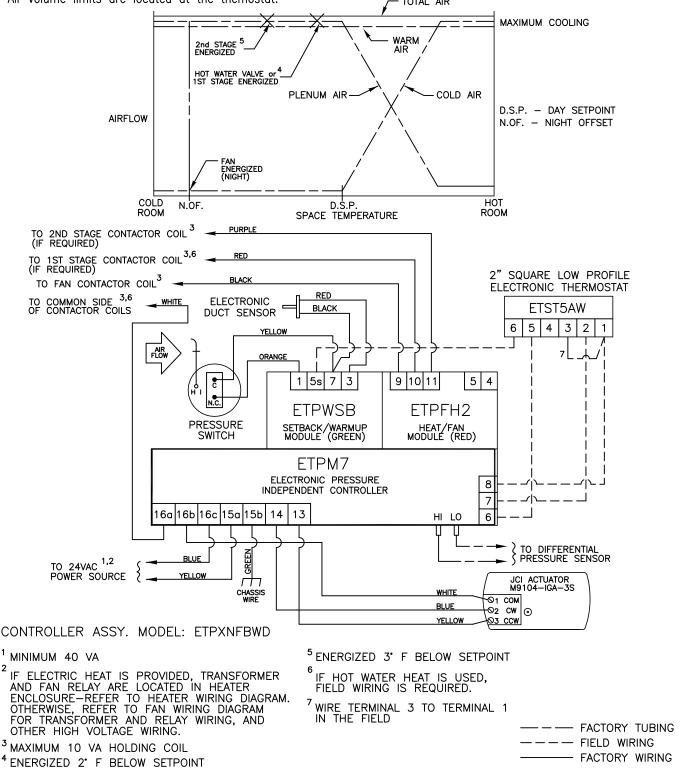
This application applies to Series Flow fan powered terminals providing summer/winter changeover and/or morning warm up and up to two stages of electric or hot water heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor, causing the primary air valve to reverse operation for changeover or morning warm up (heat is deenergized). When system air is failed, the primary air valve closes and the unit fan and heat are deenergized for night operation. Air volume limits are located at the thermostat.



SERIES FLOW FAN POWERED • SERIES 7000

FC7201

This application applies to Series Flow fan powered terminals providing up to two stages of electric or hot water heat and night setback. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat.



SERIES 7000 • SERIES FLOW FAN POWERED

FC7401

This application applies to Series Flow fan powered terminals providing up to two stages of electric or hot water heat, night setback and morning warm up. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by the electronic duct sensor causing the primary air valve to open to the maximum airflow setpoint for morning warm up (heat is deenergized). Air volume limits are located at the themostat.

Johnson Controls

OTHER SERIES FLOW FAN POWERED CONTROL SEQUENCES

(See ENVIRO-TEC[®] submittal data for additional information on the sequences below).

FC7002: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off). The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFH3 (Heat/Fan Module [Red]).

BY JOHNSON CONTROLS

FC7003: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFHM1 (Heat/Fan Module [Red]).

FC7004: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFHM2 (Heat/Fan Module [Red]).

FC7005: This application applies to Series Flow Fan Powered Terminals providing proportional modulating electric (SSR) heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFHM3 (Heat/Fan Module [Red]).

FC7102: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of

electric heat (On/Off), summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7103: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFHM1 (Heat/Fan Module [Red]).

FC7104: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFHM2 (Heat/Fan Module [Red]).

FC7105: This application applies to Series Flow Fan Powered Terminals providing proportional modulat-

ing electric (SSR) heat, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFHM3 (Heat/Fan Module [Red]).

FC7202: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off). The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7203: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFHM1 (Heat/Fan Module [Red]).

FC7204: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFHM2 (Heat/Fan Module [Red]).

FC7205: This application applies to Series Flow Fan Powered Terminals providing proportional modulating electric (SSR) heat and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFHM3 (Heat/Fan Module [Red]).

FC7301: This application applies to Series Flow Fan Powered Terminals providing fan and up to two stages of electric heat (On/Off) or hot water heat (two-position) and morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).

FC7302: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off). The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7303: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat and morning warm up. The unit fan draws either cold primary air or warm plenum

Series Flow Fan Powered • Series 7000

air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFHM1 (Heat/Fan Module [Red]).

FC7304: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat and morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFHM2 (Heat/Fan Module [Red]).

FC7305: This application applies to Series Flow Fan Powered Terminals providing proportional modulating electric (SSR) heat and morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFHM3 (Heat/Fan Module [Red]).

FC7402: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off), morning warm up and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized)Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7403: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat, morning warm up and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized)Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFHM1 (Heat/Fan Module [Red]).

FC7404: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat, morning warm up and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized) Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFHM2 (Heat/Fan Module [Red]).

FC7405: This application applies to Series Flow Fan Powered Terminals providing proportional modulating electric (SSR) heat, morning warm up and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the

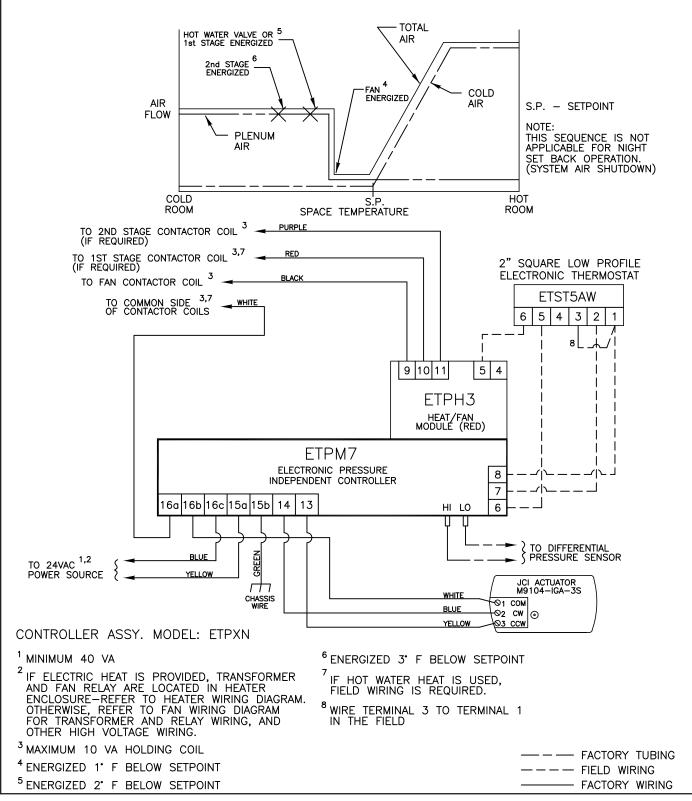
primary air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized)Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFHM3 (Heat/Fan Module [Red]).

FC7501: This application applies to Series Flow Fan Powered Terminals providing fan and up to two stages of electric heat (On/Off) or hot water heat (two-position), night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). Air volume limits are located on the ETPECO module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).

FC7502: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off), night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). Air volume limits are located on the ETPECO module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETP-COSB (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7503: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat, night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETP-COSB (Setback/Warm up Module [Green]) and the ETPFHM1 (Heat/Fan Module [Red]).

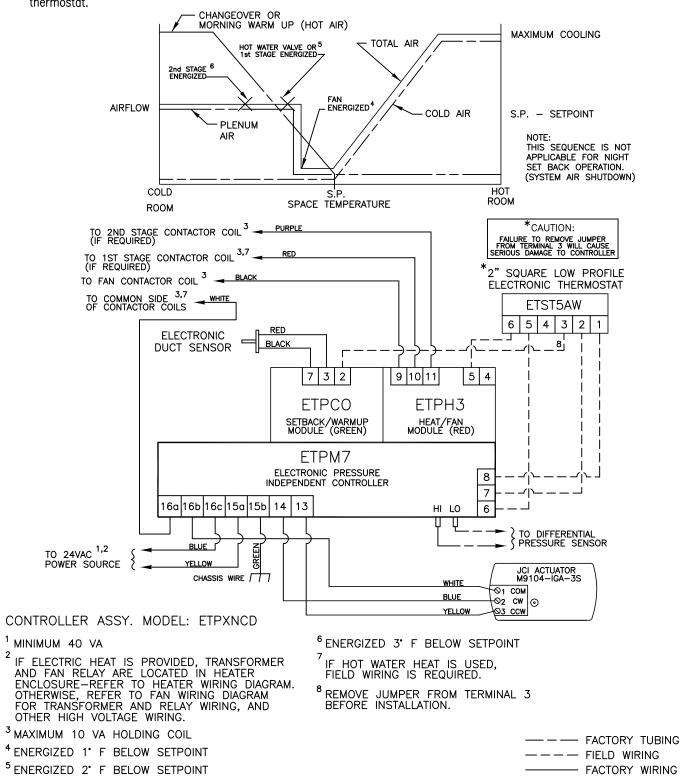
FC7504: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat, night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFHM2 (Heat/Fan Module [Red]).


FC7505: This application applies to Series Flow Fan Powered Terminals providing proportional modulating electric (SSR) heat, night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETP-COSB (Setback/Warm up Module [Green]) and the ETPFHM3 (Heat/Fan Module [Red]).

PARALLEL FLOW FAN POWERED • SERIES 7000

FV7001

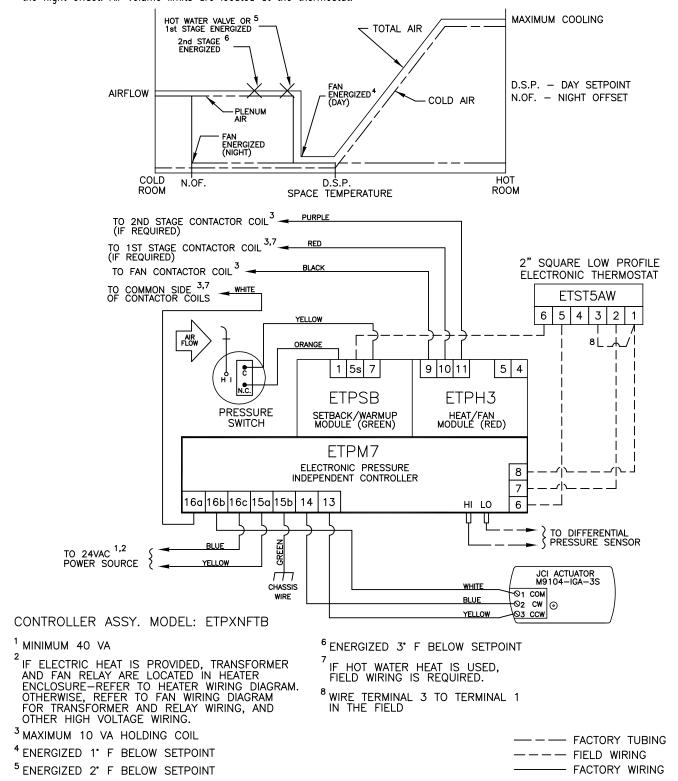
This application provides intermittent fan powered terminals providing up to two stages of electric or hot water heat. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized, thus supplying plenum air to the space. On a further drop in space temperature heat is energized in stages to satisfy the load. Air volume limits are located at the thermostat.



SERIES 7000 • PARALLEL FLOW FAN POWERED

FV7101

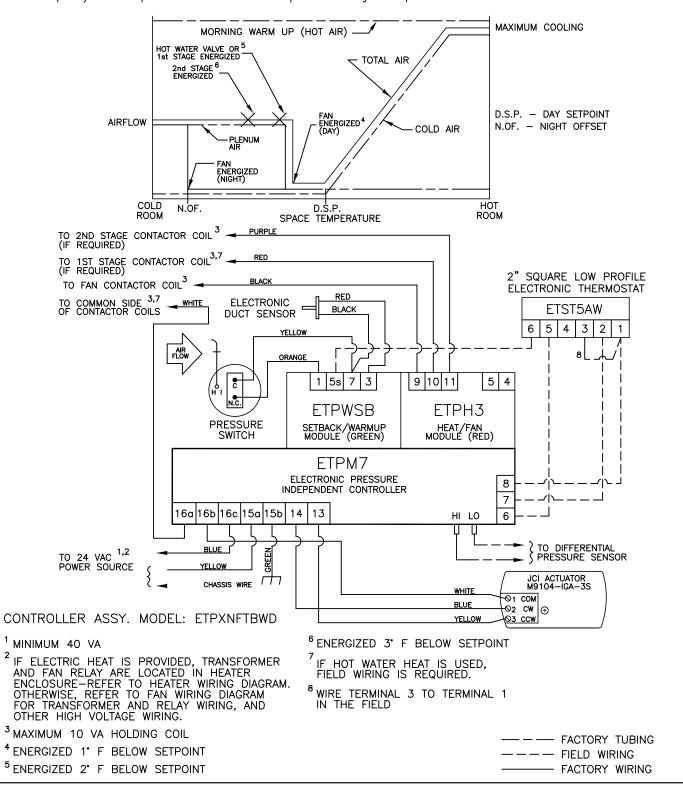
This application provides intermittent fan powered variable air volume control with up to two stages of electric or hot water heat and summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are deenergized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat.


Johnson Controls

PARALLEL FLOW FAN POWERED • SERIES 7000

FV7201

This application provides intermittent fan powered variable air volume control with up to two stages of electric or hot water heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat.



SERIES 7000 • PARALLEL FLOW FAN POWERED

FV7401

This application provides intermittent fan powered variable air volume control with up to two stages of electric or hot water heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are deenergized and the primary air valve opens to the maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat.

OTHER PARALLEL FLOW FAN POWERED CONTROL SEQUENCES

(See ENVIRO-TEC[®] submittal data for additional information on the sequences below).

FV7002: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off). As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. Air volume limits are located at the thermostat. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPH4 (Heat/Fan Module [Red]).

FV7003: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. Air volume limits are located at the thermostat. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7004: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. Air volume limits are located at the thermostat. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7005: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7102: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off), summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7103: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat, summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7104: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat, summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is ener-

SERIES 7000 • PARALLEL FLOW FAN POWERED

gized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7105: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat, summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7202: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off) and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7203: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7204: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7205: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7301: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with up to two stages of electric

heat (On/Off) or hot water heat (two-position) and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPH3 (Heat/Fan Module [Red]).

FV7302: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off) and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7303: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7304: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan pow-

ered variable air volume with floating modulating hot water heat and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7305: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7402: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off), night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Con-

SERIES 7000 • PARALLEL FLOW FAN POWERED

troller), ETPWSB (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7403: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7404: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7405: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7501: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with up to two stages of electric heat (On/Off) or hot water heat (two-position), night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPH3 (Heat/Fan Module [Red]).

FV7502: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off), night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve

remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7503: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat, night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7504: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat, night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]),

ETPCOSB (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7505: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat, night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

700 to 7000 Cross Reference Guide

SINGL	E DUCT	DUAL	DUCT	SERIES FLOW PARAL		PARALL	RALLEL FLOW	
7000	OLD 700	7000	OLD 700	7000	OLD 700	7000	OLD 700	
SEQUENCE	SEQUENCE	SEQUENCE	SEQUENCE	SEQUENCE	SEQUENCE	SEQUENCE	SEQUENCE	
SD7000	SD701S	DT7100	DD701S	FC7001	FC701S	FV7001	FV701S	
507000			DT701S	10/001	FC702S	107001	FV702S	
	SD702S	DD7200	DD702A					
	SD703S							
	SD704S							
	SD713S							
SD7001	SD714S			FC7003	FC7020SM	FV7003	FV702SM	
	SD715S							
	SD724S							
	SD725S							
	SD726S							
607000	SD702SM			567004	N1/A	51/7004	N1/A	
SD7003	SD713SM			FC7004	N/A	FV7004	N/A	
507004	SD724SM			FC700F	N1/A	EV/700E	N1/A	
SD7004 SD7005	N/A			FC7005	N/A FC704S	FV7005 FV7002	N/A FV704S	
507005	N/A			FC7002	FC704S FC713S	FV/002	FV704S FV717S	
607100	SD705S			567101	FC713S FC714S	FV7101		
SD7100	SD/055			FC7101	FC714S FC715S	FV/101	FV718S	
	SD706S				FC/155		FV719S	
	SD7063 SD707S							
	SD7073							
SD7101	SD7083			FC7103	FC714SM	FV7103	FV718SM	
	SD7103							
	SD7173							
	SD7183							
SD7103	SD716SM			FC7104	N/A	FV7104	N/A	
SD7104	N/A			FC7105	N/A	FV7105	N/A	
SD7105	N/A			FC7102	FC716S	FV7102	FV720S	
557105				10,102	FC705S	117102	FV705S	
SD7300	N/A			FC7201	FC706S	FV7201	FV706S	
					FC707S		FV707S	
SD7301	N/A			FC7203	FC706SM	FV7203	FV706SM	
SD7303	N/A			FC7204	N/A	FV7204	N/A	
SD7304	N/A			FC7205	N/A	FV7205	N/A	
SD7305	N/A			FC7202	FC708S	FV7202	FV708S	
SD7600	SD723R			FC7301	N/A	FV7301	N/A	
SD7606	SD727R			FC7303	N/A	FV7303	N/A	
SD7607	SD728R			FC7304	N/A	FV7304	N/A	
				FC7305	N/A	FV7305	N/A	
				FC7302	N/A	FV7302	N/A	
				FC7501	N/A	FV7501	N/A	
				FC7503	N/A	FV7503	N/A	
				FC7504	N/A	FV7504	N/A	
				FC7505	N/A	FV7505	N/A	
				FC7502	N/A	FV7502	N/A	
					FC717S		FV721S	
				FC7401	FC718S	FV7401	FV722S	
					FC719S		FV723S	
				FC7403	FC718SM	FV7403	FV722SM	
				FC7404	N/A	FV7404	N/A	
				FC7405	N/A	FV7405	N/A	
				FC7402	FC720S	FV7402	FV724S	

GENERAL NOTES

Since the actions below involve control signals, they must be done with a dry contact closure (contact closure cannot be paralleled from terminal to terminal):

CLOSE DAMPER

To close the air valve, open ETPM7 terminal 6 to thermostat terminal 5.

Sample Application: Could be used during smoke sequences to isolate different areas.

OPEN DAMPER

To open the air valve fully, short ETPM7 terminal 6 to ETPM7 terminal 7.

Sample Application: Could be used by airside test and balance to set CFM of the air handler.

OPEN AIR VALVE TO MAXIMUM CFM SETPOINT

To open the air valve to maximum CFM setpoint, disable heat and disable VFR fan (if applicable), short ETPH terminal 5 to ETPH terminal 7 (if present) or ETPM7 terminal 7.

Sample Application: Could be used during airside test and balance.

DISABLE HEAT

To disable heat and heating minimum (SD only), short ETPM7 terminal 4 to ETPM7 terminal 7.

Sample Application: Could be used if boiler is off and you don't want the VAV terminals to go into heating mode.

CONNECTING MORE THAN ONE BOX TO A THERMOSTAT

To operate up to four air terminals from one thermostat, wire first terminal to thermostat per sequence diagram. Parallel connector terminals 5 (if present), 6 and 7 to other air terminals. Do not connect connector terminal 8's together as serious damage will result. Since balancing is performed at the thermostat, all air terminals should be balanced with same voltages. In addition, for best results, all air terminals connected for this application should be the same size.

Sample Application: Could be used in open area where one thermostat could sense general temperature and control several air terminals in unison.

Printed on recycled paper

